
PCaPAC 2012, Kolkata, India

Andreas Beckmann

European XFEL GmbH
andreas.beckmann@xfel.eu

A Flexible and Testable

Software Architecture

THCD05: A Flexible and Testable Software Architecture

2

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

Outline

 Motivation

 Applying Presenter First

 Technical Background

 Presenter First

 Example: Device Server

 First Experience

 Summary

THCD05: A Flexible and Testable Software Architecture

3

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

 Motivation

 Applying Presenter First

 Technical Background

 Presenter First

 Example: Device Server

 First Experience

 Summary

THCD05: A Flexible and Testable Software Architecture

4

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

Motivation

 Testability

 System level tests are problematic

 Require complete system environment

 Difficult to test corner cases

 Testing is a manual task

 Unit level tests are better

 Require simple test environment

 Easy to generate all kind of stimuli

 Testing is automated

 Flexibility

 Allow integration into any machine control system

 Allow exchange of message layer

THCD05: A Flexible and Testable Software Architecture

5

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

 Motivation

 Applying Presenter First

 Technical Background

 Presenter First

 Example: Device Server

 First Experience

 Summary

THCD05: A Flexible and Testable Software Architecture

6

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

Technical Background

 DOOCS Server

 Interfaces to machine control

 Runs on a Linux host

 Device Server

 Interfaces to PLC

 Runs on a Windows host

 Data Exchange with ZeroMQ messages

 More convenient to use than plain sockets

 Two schemes:

 Exchange on request (request/response scheme)

 Exchange on value change (publish/subscribe scheme)

DOOCS

Server

Device

Server

PLC

Linux host Windows host

Control Network

ZeroMQ

ADS
DOOCS

Server

Device

Server

ZeroMQ

THCD05: A Flexible and Testable Software Architecture

7

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

Presenter First

 Pattern

 Presented in 2006 by Atomic Objects

 Variant of MVP design pattern

 MVP invented by Taligent as a generalized MVC

 Components:

 Model: manages application data and logic

 View: interacts with the environment

 Presenter: represents the behaviour of the application

 Communication over defined interfaces

 Essential for unit testing => Testability

 No connection between model and view (!)

 Simplifies exchange of view => Flexibility

M

P

V

view

interface

model

interface

THCD05: A Flexible and Testable Software Architecture

8

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

Presenter First (contd.)

 Process

 Start with implementing the Presenter

 Remember: “Presenter represents the behaviour”

 Analyse the functional requirements

 Define model and view interfaces

 Unit test the presenter

 Implement Model and View afterwards

 Simply implement according to the just defined interfaces

 Unit test the model

 View is not unit testable, since it requires an environment

Presenter

Model

View

THCD05: A Flexible and Testable Software Architecture

9

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

Example: Device Server

 Software Architecture

 C# application run as a Windows Service

 2 main modules

 Windows Service module

 Integrates the Device Server into Windows Service Manager

 Simply starts and stops the Control module

 Control module

 Instances MVP

 Presenter waits on events from Model and View

» Model sends events when PLC variables change their value

» View sends events when ZeroMQ messages arrive

Windows Service

Control

V

P

M

Start, Stop

ZeroMQ PLC

Windows Service

Control

V

P

M

THCD05: A Flexible and Testable Software Architecture

10

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

Example: Device Server (contd.)

 Applying Presenter First

 Select a requirement

 “The server shall respond to request messages received at the

message interface”

 Analyse the requirement

 What is the impact on Model and View?

 View indicates incoming message to Presenter

 Presenter reads message from View

 Presenter sends the message to the Model to process it

 Model returns a response message

 Presenter sends the response message to the View

 Define interface events and methods

THCD05: A Flexible and Testable Software Architecture

11

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

M A V

P

M

Windows Service

Control

V

P

M

Start, Stop

ZeroMQ PLC

Example: Device Server (contd.)

 Testing

 Unit level tests

 Some parts cannot be unit tested

 Windows Service module, View, part of Model

 Approx. 20% of the code due to complex View

 Testing the Presenter

 Replace Model and View with mocks

 Mocks verify interface methods calls

 Testing the Model

 Wrap (untestable) PLC interface into an adapter

 Replace adapter with mock

Windows Service

Control

V

P

M

Start, Stop

ZeroMQ PLC

mock mock

mock

THCD05: A Flexible and Testable Software Architecture

12

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

Seen all over Kolkata

THCD05: A Flexible and Testable Software Architecture

13

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

Example: Device Server (contd.)

 Testing (contd.)

 Screenshots

THCD05: A Flexible and Testable Software Architecture

14

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

Example: Device Server (contd.)

 Testing (contd.)

 System Level tests

 Install Device Server

 Start Device Server

 Test the system interactively using a DOOCS client

 doocsput -t 2 -c XFEL/SASE1/UND01/GAP.SET -d 10.5

 doocsget -c XFEL/SASE1/UND01/GAP

 rpc_test

THCD05: A Flexible and Testable Software Architecture

15

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

First Experience

 Initial effort to set up unit test environment

 Required for test driven development

 Essential for refactoring

 Reduced effort for commissioning

 No extensive debugging on system level necessary

 In principle “just install and run”

 Stable operation

 Server runs for long time without failures

 Reliable communication with DOOCS Server

THCD05: A Flexible and Testable Software Architecture

16

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

 Motivation

 Applying Presenter First

 Technical Background

 Presenter First

 Example: Device Server

 First Experience

 Summary

THCD05: A Flexible and Testable Software Architecture

17

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

Summary

By using Presenter First, we got:

 Testable Software

 Comprehensive use of unit level tests

 Find bugs early

 Implementation follows behaviour requirements

 Reduce code complexity

 Flexible Software

 Message layer code decoupled from application logic

 Simplify exchange of message layer

 Device Server separated from DOOCS Server

 Allow use of other machine control servers

THCD05: A Flexible and Testable Software Architecture

18

December 6th, 2012, PCaPAC, Kolkata, India

Andreas Beckmann, European XFEL GmbH, Hamburg

Thank you for your attention

