THIC Software and Hardware Technology – THCC03

PC BASED REAL TIME DATA EXCHANGE ON 10GbE OPTICAL NETWORK USING RTOS*

Ninth International Workshop on Personal Computers and Particle Accelerator Controls

(PCaPAC - 2012; Dec. 04 to 07, 2012)

Rajeev P. Gupta (Speaker) & Haresh Dave

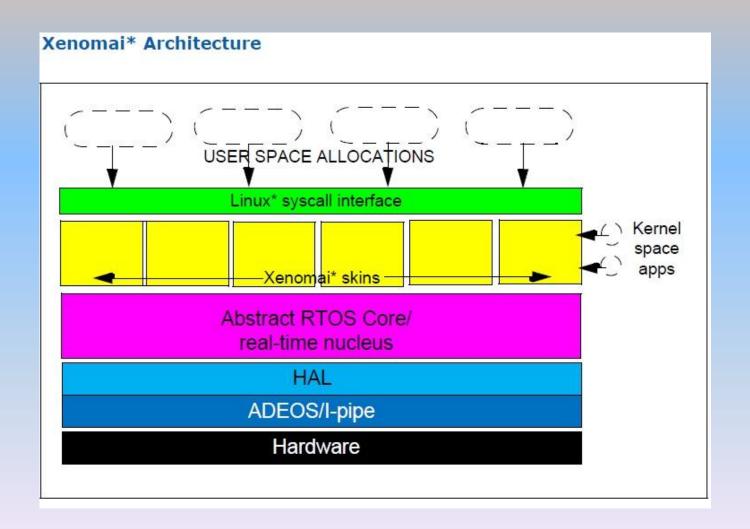
Institute for Plasma Research (IPR),

Bhat, Gandhinagar, Ahmedabad, INDIA

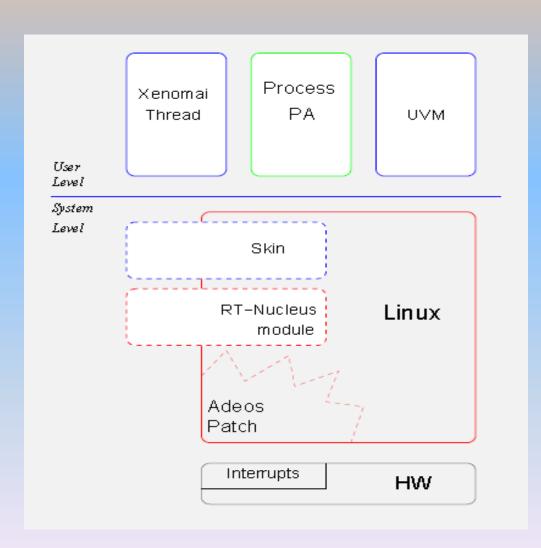
December 06, 2012

* Work is supported by research grant No. BRFST/NFP/2012/Feb/N/05; under the National Fusion Programme of the BRFST at IPR, Ahmedabad, India

PC BASED REAL TIME DATA EXCHANGE ON 10GbE OPTICAL NETWORK USING RTOS


Agenda:

- 1. Introduction
- 2. Xenomai and Linux setup
- 3.10GbE Ethernet controller Hardware setup
- 4. Network performance benchmark tools
- 5. Results
- 6. Conclusion


PC BASED REAL TIME DATA EXCHANGE ON 10GbE OPTICAL NETWORK USING RTOS *

- PC based Real-Time Operating System (RTOS) offers alternative for industrial controls
- Most PCs, operate on a non-real time OS with nondeterministic response to real time events and data
- It is possible to build hard-real time response for user applications on PC - Xenomai framework with RT_Linux provides a better solution
- Intel's 10GbE PCIe Ethernet controller (82599 chipset) cards, such as X540-T2(RJ45) and X520-SR2 (Optical), with Linux drivers are tested with Xenomai kernel for benchmark

Xenomai Architecture – Software setup

Xenomai, Adeos and Linux

Software versions used

Xenomai ver 2.6.1 with Adeos patch 3.2.21 – x86-1.patch

Applied the patch on Vanilla Kernel – 3.2.21 (Ubuntu OS 12.04)

Resultant kernel is with Xenomai framework – confirmed with Xeno-Test.

10GbE Ethernet – Hardware setup

- Test node for Cat6A: PC Core i5-CPU with PCIe
 2.0 x8 host interface;
 - Ethernet controller card: Intel X540-T2 10GbE dual adapter with 2xRJ45 for Cat6A cable.

- Test node for Optical: PC Core i5- CPU with PCIe
 2.0 x8 host interface;
 - Ethernet controller card: Intel X-520-SR2; Intel 82599 based 10GbE dual port optical network adapter; Optical cable is LC/LC multimode fibre.

Intel X540-T2 10GbE Dual Adapter – Cat6A

This Ethernet Converged Adapter X540-T2 is the latest 10GbE adapter with compatibility to 1GbE. Supports hardware IEEE1588, virtualization and Linux.

Intel X520-SR2 10GbE Dual Adapter - Optical

Intel's Ethernet X520-SR2 Adapter for Optical interface is flexible and scalable. Supports hardware IEEE1588, Virtualization and Linux.

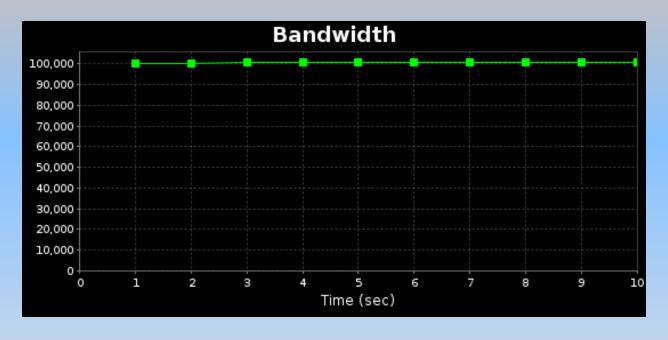
Network Performance Benchmark Tools

Standard benchmark tools used

- Jperf
- Netperf
- Iperf
- Tshark etc.

Tests for UDP and TCP protocol

Jitter, Transaction rate, bandwidth and RTT


Performance for UDP protocol - server (lower bandwidth – no data loss)

UDP Server with jitter of 2uSec,						
			Lost/Total			
Transfer	Bandwidth	Jitter	Datagrams			
122649			0/85436			
KBytes	100454 Kbps	0.002 ms	(0%)			

UDP Server output

Performance for UDP protocol - client

Transfer	Bandwidth		
122649 KBytes	100453 Kbits/sec		

UDP Client output

Performance for UDP protocol (higher bandwidth – higher data loss)

UDP server output with BW = 1Gbps

iperf -s -u -P 0 -i 1 -p 5001 -C -f g

			Lost/Total
Interval	Bandwidth	Jitter	Datagrams
	0.68		4566/582135
0.0-10.0 sec	Gbits/sec	0.002 ms	(0.78%)

0.0-10.0 sec 1 datagrams received out-of-order

Transaction Rate for UDP protocol

Netperf result for UDP protocol

NEWI5:~# netserver -L 192.168.10.1 -p 5679 Starting netserver with host '192.168.10.1' port '5679' and family AF_UNSPEC							
NEWI5:~\$ netperf -t UDP_RR -L 192.168.10.2 -H 192.168.10.1 -p 5679							
Socket Send bytes	Size Recv Bytes	Request Size bytes	Resp. Size bytes	Elapsed Time secs.	Trans. Rate per sec		
163840	163840	1	1	10.01	102245.9		

Netperf command and result for CPU utilization

Netperf command for UDP request response with CPU utilization

NEWI5:~# netserver -L 192.168.10.1 -p 9999

NEWI5:~\$ netperf -t UDP_RR -L 192.168.10.2 -H 192.168.10.1 -p 9999 -c -C

		Reques		Elapse					
Socket	Size	t	Resp.	d	Trans.	CPU	CPU	S.dem	S.dem
Send	Recv	Size	Size	Time	Rate	local	remote	local	remote
bytes	bytes	bytes	bytes	Secs.	per sec	% S	% S	us/Tr	us/Tr
					98200.				
163840	163840	1	1	10.01	4	22.72	22.72	9.255	9.255

Performance for TCP protocol (no data loss)

Command and result for TCP protocol

NEWI5:~# netserver -L 192.168.10.1 -p 5679

Starting netserver with host '192.168.10.1' port '5679' and family AF_UNSPEC

NEWI5:~\$ netperf -t TCP_RR -L 192.168.10.2 -H 192.168.10.1 -p 5679

MIGRATED TCP REQUEST/RESPONSE TEST from 192.168.10.2 () port 0 AF_INET to 192.168.10.1 () port 0 AF_INET: first burst 0

Socket	Size	Request	Resp.	Elapsed	Trans.
Send	Recv	Size	Size	Time	Rate
bytes	Bytes	bytes	bytes	Secs.	per sec
16384	87380	1	1	10.01	82986.52

PC BASED REAL TIME DATA EXCHANGE ON 10GbE OPTICAL NETWORK USING RTOS

RTT, as given by ping command

NEWI5:~# ping -I 192.168.10.1 192.168.10.2

64 bytes 192.168.10.2: icmp req=4 ttl=64 time=0.006 ms

6 packets Tx, 6 received, 0% packet loss, time 5000ms

rtt min/avg/max/mdev = 0.006/0.010/0.022/0.006 ms

Conclusion

- Linux kernel with Xenomai extension can provide Hard real time performance,
- Intel's 10GbE Ethernet controllers are useful for complex applications. The RTT of the order of 6 to 10 uSec is possible.
- TCP protocol offers reasonable performance with higher reliability. UDP protocol may be used for lower bandwidth application, however at higher bandwidth the data loss increases.
- For multiple node networks, TCP protocol is recommended. A real time network with the order of 10usec round trip time is possible with pre-emptive Linux, using Xenomai framework system.

PC BASED REAL TIME DATA EXCHANGE ON 10GbE OPTICAL NETWORK USING RTOS *

Thank you....

Questions?

Notes:

- Xenomai 2.6.1 was released on July 10, 2012
- RTnet driver for 10GbE card is not yet available, however, the MSI-X can set the interrupt priority
- Other methods for RT nucleus module are under investigation