

STATUS OF THE ULTRA FAST TOMOGRAPHY EXPERIMENTS CONTROL AT ANKA (THCA06)

D. Haas, W. Mexner, T. Spangenberg, A. Cecilia, P. Vagovic, A. Kopmann, M. Balzer, M. Vogelgesang, H. Pasic, S. Chilingaryan

Content

- ANKA Synchrotron Light Source
- Tomography and its control system
- The reconstruction framework "UFO"
- Results
- Outlook

ANKA – Synchrotron Light Source

ANKA at KIT First light in year 2000 research methods

- Fluorescence
- Scattering
- Spectroscopy
- Lithography
- Imaging
- Synchrotron research
- Technical data of the storage ring
 - Storage ring diameter 35m
 - Energy 2.5 GeV
- Current up to 200 mA
 - 17 Beamlines (15 productive, 1 commissioning, 1 construction)

beam tube X-ray beam rotary motor x axis motor table with y axis motor

Simple schematics of an tomography experiment

Tomography and it's challenges

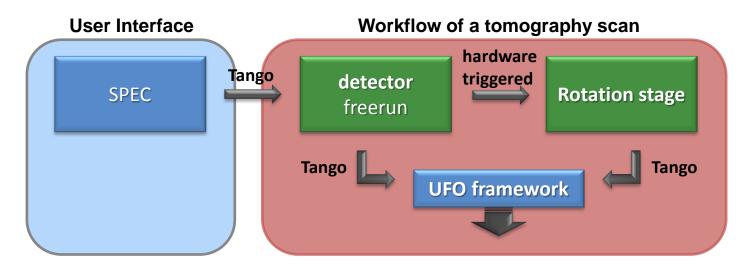
Microtomography in the past

- ~1000 projections
- Slow computing machines
- Slow detectors
- Acquisitiontime ~1hour
- Reconstructiontime ~half a day

Efficient use of flux and new CMOS detectors offers new imaging techniques
GPU-based tomography reconstruction make online processing available
Handling experimental data up to several TByte/day

Possibility to implement an ultra fast tomography scan with a total duration less than a minute \rightarrow 4D resolution

Tomography experimental control

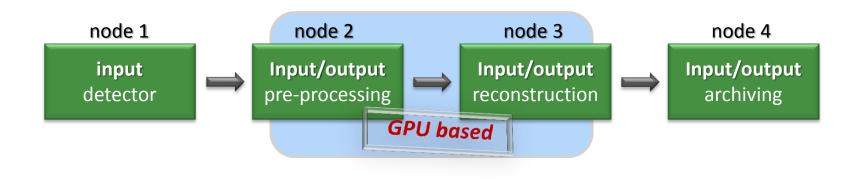


Macro User Interface, connected via Tango software bus

- Tomography experiment is started by Tango
- Tango is too slow for handling the whole experiment, latencies ~ms

Detector is the "Master" of the experimental workflow

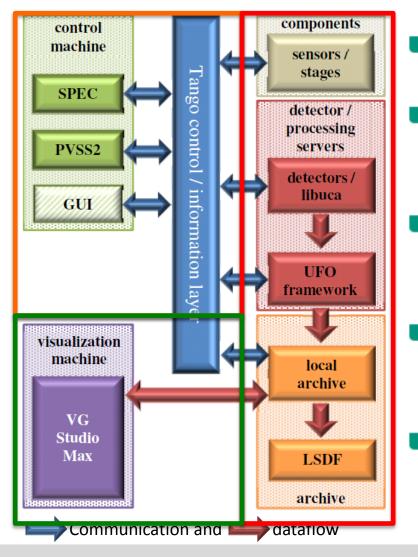
- The detector triggers all components on hardware level
- Latencies ~µs



The reconstruction framework "UFO"

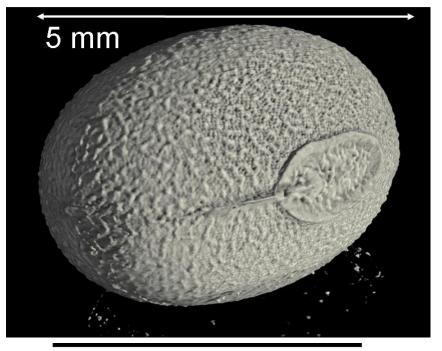
(Ultra fast X-Ray imaging of scientific processes with on-line assessment and data-driven process control)

- A GPU based framework reconstructing tomography data
 - Using back-projection algorithm
 - GPU based for fasten up the overall reconstruction time
- Implemented in C and uses GLib, GObject and OpenCL
- Includes highly optimized image algorithms
- Data is streamed in a processing chain (pre-processing, reconstruction etc)
 - Each step is realized as a input/output node
 - Other processing steps can easily added



Overall beamline control system

- Tango coordinating workflow of control system
- All hardware components can be seen as Tango-Servers
- Tango client SPEC is starting tomography scan
- The workflow of the tomography scan is coordinated by the UFO framework
- Visualization is separeted from the whole workflow



7

Results (Experiment of Cecilia A. from ANKA)

Volume rendering of an egg of the stick insect Peruphasma schultei

Algorithm	Overall reconstruction time
PyHST	31.3 s
UFO-Framework	12.5 s

Used optics

- 74µm thick LSO:Tb scintillator
- Eyepiece with *f*=180mm
- Objective with *f*=50mm
- Results in total magnification of 3.6x and a pixel size of 5.5µm
- CMOS detector *Photron SA-1*(5400 frames/s in full-frame mode, 12bit)
- frequency of the detector of 2000 frames/s
- Rotation stage speed 450 °/s
- Results in a tomography scan with 800 projections taken in 0.4s

Outlook

- Automatization of the whole workflow
- Implementation of data life-cycle management
- Implementing NEXUS format for Meta-data handling
- Developing a graphical user interface

Final concept realization at upcoming IMAGE beamline, starting next year!

Acknowledgements and References

Acknowledgements

- Thanks to all people of the imaging and IT group at ANKA
- Also thanks to the Institute For Data Processing And Electronics at the KIT

References

- High Data Rate Initiative, <u>http://www.pni-hdri.de</u>
- Ultra-fast X-ray Imaging, <u>ufo.kit.edu</u>
- Large Scale Data Facility, <u>http://www.scc.kit.edu/forschung/lsdf.php</u>

email: <u>david.haas@kit.edu</u>

