DESIGN OF THE DATA ACQUISITION SYSTEM FOR THE NUCLEAR PHYSICS EXPERIMENTS AT VECC

P. Dhara^{*}, A. Roy, P. Maity, P. Singhai, P. S. Roy DAQ & Dev Section, VECC

Outline

- Detector system
- DAQ Requirement
- □ VME DAQ
- Multicrate VME
- Synchronization
- Future Plan
- Conclusion

Large Detector Arrays at VECC

- Charge Particle Detector Array (CPDA): 4-π charge particle detectors. It consists of three parts
 - Forward array: 7°-45° with 24 Si-Si-CSI(TI) telescope
 - Extreme forward array: 3°-7° with 32 Phoswich detectors
 - Backward array: 45°-175° with 330 CSI(TI) detectors

Gamma spectroscopy

- Large Area Modular BaF₂ Detector Array (LAMBDA): Study high energy γ-rays with 162 BaF₂ detectors
- Gamma multiplicity filter array(GAMMA): 50 BaF₂ detectors

Neutron detectors:

- Neutron Time-of-flight Measurement: 50 detectors
- Neutron Multiplicity detector

DAQ Requirements

- The DAQ system should able to handle more than 1200 channels.
- Data rate of 1MParameters/sec
- Commercial-off-the-shelf hardware modules
- Support for VME and CAMAC based system on both Linux and Windows machine
- Data storage in zero suppressed mode
- Generation of online 1D and 2D histogram generation & manipulation

 CAMAC: Computer Automated Measurement And Control
 Standardized by ESONE, IEEE/ANSI, IEC around 1972

HYTEC HYTEC #04134 1331/TURBO LP 1341 $\ominus_{\text{P.C.}}$ \ominus Θ CAMAC INTERFACE NPUT REQUEST BUN GRANT INHIBI T1 \bigcirc REQUEST ADDR. TRIG IN CAMAC \odot FIN. OUT FAIL \odot NO X NO Q GRANT IN STOP/VETO \odot REQUEST \bigcirc ⊖ GRANT IN GRANT OUT \odot GRANT OUT CL DATA \odot **O*** RESET \bigcirc (O) CI **О**Т5 0 RIGGERS θ Θ ROCESSOR θ SER.N. ORTEC

CAMAC Specification

- 19" Crate, modular hardware form factor, 25 slots to attach modules.
- □ Crate contains power supply, backplane & FAN unit.
- Slot 25 is for CAMAC Crate controller module. The slot 1-24 may be occupied by CAMAC modules.
- The CAMAC backplane provides +6V, -6V, +24V & -24V, 0V (return) DC power; optionally +12V, -12V, +200V DC and 117V AC power may also be provided
- The Hytec 5331 crate controller with PCI interface card & LP1341 List Processor are used.

CAMAC backplane signals

- CAMAC Data & Address lines:
 - 24bit READ & 24bit WRITE bus.
 - N Slot number: each slot is directly addressed by controller with this signal
 - A sub-address : Each CAMAC module can host 16 sub-unit
 - F Function: Each sub-unit can perform 32 functions
- Control signals
 - S1, S2: Timing signal for dataway operations
 - Z: Initialize

CAMAC backplane signal

- C: Clear
- B: Busy
- 🗖 l: Inhibit
- Module responds with signals:
 - L: Look At Me (LAM) signal. L line individually connects each slot to the controller, works as a interrupt to controller.
 - Q: asserts the operation status
 - X: asserts the command has been accepted

- \square The typical CAMAC cycle takes minimum 1 $\mu sec.$
- If a 24bit Data is read in each cycle, maximum theoretical throughput will be 3MB/sec

Hytec CAMAC Controller

- The total read/write time from DAQ software involves interrupt latency, software overhead and the CAMAC cycle time
- \square Hytec controller on Linux takes on an average 10 μ sec
- \square With List processor the average time can be 2.14 μ sec

CAMAC DAQ Software

- CAMAC DAQ on Linux and Windows
- t4: First PC based Win16 Win3.1using WinSDK
- t32 for Win32 systems
 Windows
 98/2000/NT/XP
- Offline version st32 and ast32, offline

VME: Versa Module Eurocard

Maintained by VITA http://www.vita.com

VME64X system

- □ 19" crate with power supply unit & FAN unit
- Crate's height and depth depend on form-factor. 3U,
 6U and 9U crates (1U=1.75") are available
- 6U VME64x crate has 21 slots and common backplane for all the signal and power lines
- p1 & p2 160pin and p0 is 95pin connector for each module
- +5V, +12V, -12V, +3.3V DC power are available in VME64X crate
- Hot-swappable, User IO

Salient feature of VME Bus

- Asynchronous BUS, Master/slave architecture
- Memory mapped IO
- Supports Multiprocessors, interrupt capability
- Slot 1 is for controller/arbitrator unit
- Data bus 32bit, Address bus 32 bit, Priority Interrupt bus, Arbitration bus, Utility bus
- Multiplexed bus operation makes it possible for 64bit data and 64bit address operation
- 100ns bus cycle. Supports 40MB/sec data rate for 32bit. Multiplexed mode supports 80MB/sec data rate.

VME DAQ System

- The VME DAQ is developed in C++ and QT3 toolkit on both Linux and WindowsXP/2003
- □ SIS3100, CAEN V2718
- Controllers are interface with PCI card and fibre optics cable
- Block trasfer rate 5-7MB/sec for 32bit.

VME modules

□ CAEN VME785, 792 & 775

- 32 channel 12bit resolution
- 5.7us ADC conversion time for all 32channels
- 32event FIFO memory
- External ECL bus for control and synchronization
- BLT32, CBLT and MBLT capable
- MDI2, MADC32 from mesytec

Layered Architecture

VME DAQ Software

Tools

Configuration file

- C-style Single configuration file for complete configuration, compatible to both offline and online
- Define module, function, system, conditional construct

module{	function{	if(1 & 2)
module_type=vme785;	func_type=oned;	{
base_address=0x800000;	spec_len=4096;	function{
instance=0;	gain=1.0;	func_type=twod;
channel=32;	offset=0.0;	x_len=512;
conversion_gain=4096;	channel_no0{	y_len=512;
event_size=34;	module_type=vme785;	channel_no0{
geographical_address=4;		module_type=vme785;
}	instance=0;	instance=0;
-	channel=0;	channel=16;
system{	}	}
transfer_mode=CBLT;	}	channel_no1{
no_of_crates = 2;		module_type=vme785;
event_trigger = 30;		instance=0;
}		channel=25;
		}
	PCaPAC 2012, VECC, Kolka	h }
		}

Readout scheme

- GATE signal from Front-end electronics (FEE) is common to all
- •Common Busy
- Horizontal readout in BLT or CBLT

•Block transfer and chained block transfer (32 bits)

Common dead time mode

Multi-threaded Dataflow

Event structure

Zero-suppressed Event format

Multi-crate DAQ

- CAEN V2718 Controller with PCI interface and fiber optics cable
- 8 crates can be daisy chained with a single interface card
- Automatic CBLT setup for individual crates
- Synchronization is done by the custom built synchronizer module.
- Common dead time mode of operation
- 1.2Mparameter/sec throughput

Multicrate VME setup

Multi crate connection

Synchronization

The RAW GATE is completely blocked, when the BUSY is high
GATE signal already present at the time of busy withdrawal is also blocked.

• The width of the RAW GATE signal is always preserved.

Custom built Synchronizer module

- NIM standard module
- NIM/TTL/ECL busy input
- NIM/TTL Gate input
- NIM/TTL/ECL Gate Output
- Module blocks all the gates in busy period and always preserves the gate width
- The module can be used for multi-crate synchronization

Future plan

FPGA based DAQ board

- 100-125MSPS sampling ADC 12bit or more
- Digital filter on FPGA for signal processing; replacing analog FEE modules
- Automatic peak finding
- Heterogeneous DAQ system
 - Multiple independent DAQ (CAMAC, VME, Digital, Networked etc)
 - Absolute timestamping
- ASIC based FEE card with FPGA interface is also being explored for future upgradation

Conclusion

- CAMAC & VME based DAQ both on Linux and WindowsXP/2003 is available
- Multicrate VME version will support large number of detectors channels
- Timestamping module design and heterogeneous DAQ project has been taken up for current plan period
- Prototype development for Digital filter based DAQ board is under development

Thank you