
PCaPAC2012

Facility-Wide Synchronization of Standard FAIR

Equipment Controllers

Stefan Rauch, Wesley Terpstra, Wolfgang Panschow, Matthias Thieme,

Cesar Prados, Marcus Zweig, Mathias Kreider, Dietrich Beck, Ralph Bär

GSI, D-64291 Darmstadt, Germany

'

&

$

%

Abstract

The standard equipment controller under development for the new FAIR ac-

celerator facility is the Scalable Control Unit (SCU). It is designed to synchro-

nize and control the actions of up to 12 purpose-built slave cards, connected

in a proprietary crate by a parallel backplane. Inter-crate coordination and

facility-wide synchronization are a core FAIR requirement and thus precise

timing of SCU slave actions is of vital importance.

The SCU consists primarily of two components, an x86 COM Express daugh-

ter board and a carrier board with an Altera Arria II GX FPGA, interconnected

by PCI Express. The x86 receives configuration and set values with which it

programs the real-time event-condition-action (ECA) unit in the FPGA. The

ECA unit receives event messages via the timing network, which also synchro-

nizes the clocks of all SCUs in the facility using White Rabbit. Matching events

trigger actions on the SCU slave cards such as: ramping magnets, triggering

kickers, etc.

Timing requirements differ depending on the action taken. For softer real-

time actions, an interrupt can be generated for complex processing on the

x86. Alternatively, the FPGA can directly fire a pulse out a LEMO output or

an immediate SCU bus operation. The delay and synchronization achievable

in each case differs and this paper examines the timing performance of each

to determine which approach is appropriate for the required actions.

Introduction

In the FAIR control system, a data master issues high-level

commands to control accelerator devices. The front-end

controllers in the system reacts to relevant commands, issuing

appropriate actions to their hardware components. Depending

on the action to be taken, there are different timing

requirements to be met.

■ commands carry absolute execution timestamp

■ time limit for frond-end controllers for receiving

commands

■ depending on the time for processing an action

■ tradeoff between responsivness and planning ahead

Non-deterministic execution time is a potentially much more

serious problem. For example, if a kicker executes an action a

few nanoseconds too late, the beam might be lost. However, not

all actions require the same precision, and it may make sense to

trade accuracy for flexibility in some situations. Fortunately, the

most common equipment controller in FAIR, the Scalable

Control Unit (SCU), has several possibilities for executing

actions. This paper outlines the timing requirements of various

accelerator components in FAIR and explorers the alternatives

which could meet them.

Use Cases

■ main frontend controller for the FAIR project

■ different slaves for different use cases

● Adaptive Control Units (ACU) for power supplies

● FPGA Interface Board (FIB) for Radio Frequency (RF)

control

● Kicker modules controlled by IFK via MIL-STD-1553

based field bus

FPGA Base Board

FPGA

LM32

WR Core

P
C
Ie
 B
ri
d
g
e

S
C
U
 B
u
s

Userspace

Kernelspace

FESA

PCIe driver

Intel Atom

ACU/FIB

IFK M
IL

Datamaster

COM Express

Figure 1: Block diagram of SCU

Scalable Control Unit (SCU)

■ stack of up to three separated boards

■ base board with Arria II FPGA, 2 SFP slots, DDR3 RAM,

parallel flash, SCU bus

■ White Rabbit Timing circuitry

■ COMExpress module with Intel Atom CPU, connected via

PCIe

■ optional extension board for MIL-STD-1553 based field

bus

■ SCU receives 1ns accurate timing information via White

Rabbit link

µs min mean max stddev

FPGA 0 0.001 0.001 0.001

LM32 2.863 2.924 3.217 0.058

Kernel 7.120 13.29 37.73 3.49

Userspace 49.36 62.49 93.33 5.62

FESA 138.9 170.1 246.1 10.8

Figure 2: Execution timing performance

Execution Alternatives

■ FPGA

● can be programmed to generate output on 8ns phase

aligned clock edge

● with fine delay card down to 1ns

● only source of jitter is PLL of the FPGA and inherent

inaccuracy of White Rabbit

■ LM32

● FPGA triggers soft-CPU via interrupt

● software generates appropriate action

● delay from switch time to interrupt context and

running the software

● jitter from cache behaviour and on-chip bus access

■ Atom-Kernel

● FPGA interrupt directly handled in kernel

● delays equal to LM32 + PCIe bridge delay

● more jitter caused by Linux kernel

■ Atom-Userspace

● FPGA interrupt delivered to userspace

● adds delay by context switch

■ FESA

● interrupt is translated to an action using threads

● this increases number of context switches

 0 50 100 150 200 250

N
or

m
al

iz
ed

 P
D

F

delay (us)

LM32
Kernel

Userspace
FESA

Figure 3: Comparison of delay distributions

Analysis

The outputs of an SCU were connected to an oscilloscope. First

output is the action aligned to FPGA’s 8ns clock. Second output

is toggled by execution path. The approach ignores FPGA

execution time. All test were done with background load and

with at least 10000 samples. Load for LM32 was White Rabbit

PTP core and save/restore of all 32 registers on interrupt context

switch. The Atom was streaming text over ssh. Test were done

with real-time patched 2.6.33.6 Linux kernel. The PCIe bridge

interrupt handler and tasklet process were set to priority 99, the

userspace test program to 98. FESA set its own priority to 60. We

also measured the LM32 without instruction cache. This

reduced the variability from 354ns to 272ns. Average delay was

increased from 2.924µs to 3.810µs. Most of the variability seems

to stem from Wishbone operations. The LM32 was clocked at

62.5Mhz and when zoomed into the plot around 3µs you can see

a distribution of 22 spikes with 16ns intervals (Figure 4). The

time from interrupt to the handler in Linux and the time from

interrupt handler to userspace varies significantly. With 10000

samples the worst case delay was 240µs for FESA.

 25 30 35 40 45

N
or

m
al

iz
ed

 P
D

F

delay (us)

LM32 icache
LM32 nocache

Figure 4: LM32 delay distribution

Conclusion

The measured times as presented in Figure 2 must be reviewed

in the context of different use-cases. As an example, ramping of

magnets must be done synchronously. Here, a guaranteed

synchronicity of 10-20µs must be achieved for ring machines

like the SIS18 and the SIS100. Another example is the control of

kicker magnets, which requires at least 3ns precision and can

only be done with FPGA Hardware Description Language (HDL).

Software on the COM Express module may only be used for

cases, where hard real-time is not required. None of the

solutions involving the CPU on the COM Express module fulfill

those requirements, as long as the use of real-time Linux as

operating systems is a stringent requirement for software tools

like FESA.

For hard real-time the options are FPGA HDL or LM32 software.

Here, FPGA HDL provides nanoseconds timing while LM32

software provides a better flexibility. To avoid stringent

limitations for future developments of the FAIR accelerator

complex, standard FAIR equipment controllers like the SCU

should be designed to support hard real-time on the

nanoseconds scale. If flexibility during runtime is required, the

ideal solution could be a combination of both options, where

LM32 software creates the action patterns that are phase aligned

with high precision by FPGA HDL.

