
Control System Studio archiver with PostgreSQL back-end
Optimizing performance and reliability for a production environment*

M. Konrad†, C. Burandt, J. Enders, N. Pietralla

Institut für Kernphysik, Technische Universität Darmstadt, Germany

*Work supported by DFG through CRC 634

†konrad@ikp.tu-darmstadt.de

Requirements and Hardware Disk performance and reliability

Memory configuration Database partitioning

Performance measurements

Summary

• if sample table becomes much bigger

than RAM query times can escalate and

maintenance becomes difficult

• improve performance by splitting table

into smaller pieces

• weekly partitioning for S-DALINAC

• PostgreSQL does not provide built-in

functions for partitioning

⇒ implemented partitioning using server-side programming features

• use table inheritance to combine weekly subtables into one table

• trigger function redirects INSERTs into appropriate partition

• new partitions are created automatically

⇒ included in Control System Studio distribution

Write performance
• use Archive Engine tests to measure

performance (same code as used

during operation)

• write rate depends on database

configuration (see table)

• benchmarks written in Perl suggest

that performance can be improved by

using more efficient commands to

write the data (e. g. COPY)

• archiving system for the Superconducting Darmstadt

Linear Accelerator (S-DALINAC)

• tens of thousands of EPICS channels with up to 10 Hz

• should provide read access from different applications

⇒ based on Control System Studio Archive Engine for

relational database (RDB)

⇒ PostgreSQL 9.1 on Debian Linux as back-end

⇒ CSS Data Browser as control room front-end

Reliable writes
• RDBs flush data to disk after each

commit

• data can be lost in case of power-

outages if disk write-back caches are

used

⇒ use RAID controller with non-

volatile write-back cache

⇒ run RDB back-end on physical

machine (no virtual machine)

Performance
• heavy random access workload during queries (index search)

⇒ optimize for random access performance

• use RAID 10 for database, RAID 1 for write ahead log

• separate disks for database, write ahead log and

operating system

Mainboard

CPU

Main memory

RAID controller

Disks

Supermicro X9DRi-F

2x Intel Xeon

E5-2643 @3.3 GHz

128 GB DDR3 reg. ECC

Adaptec 6805 SAS2

36x SAS 300 GB

Foreign key

constraints

no

yes

yes

H

Partitioning

no

no

yes

H

Rows/s

18289

6075

3865

Volume

operating system

write ahead log

database

hot spare

RAID level

1

1

10

Number of disks

2

2

30

2

• most queries ask for data from the last days

⇒ RAM should be large enough to hold data of

the last days including relevant indexes

• PostgreSQL spawns a dedicated process for each

client

• read and write operations are performed against

a common memory region (“buffer cache”)

• increase the size of the buffer cache to 25% of

the RAM for optimal performance (default is

three orders of magnitude lower!)

• on Linux the “maximum shared memory segment

size” of the kernel has to be increased accordingly

Read performance
• tuning operating system read ahead

can improve read performance

drastically

• benchmarking RDB read performance

is complex

• caching is very important

• up to now: measuring execution time

of single queries (90% of all query

times below 250 ms)

⇒ partitioning increases performance

• multi-threaded test issuing parallel

queries is under development

To achieve high performance while at the same time ensuring reliability

• use battery backup for write cache

• use a enough main memory to cache important data

• tune operating system carefully

• configure RDB back-end carefully

• partition big tables

• if very high write performance is needed remove foreign key constraints

• in the future the performance of the Archive Engine might be improved by using

more efficient write commands

stadt

10 Hz

ations

fofof r

power outage
⇒ data lost




