

The WhiteRabbit Timing System

WhiteRabbit is designed to do...

- Time Synchronisation
- Timestamping
- Machine Control
- Deterministic Switching

WhiteRabbit offers...

- Timing Accuracy:
- Robustness:
- Scalability:
- Link length:

< 1ns, < 20ps Jitter

event loss < 10^{-12}

2000 timing receivers

up to 10 km

WhiteRabbit employs ...

- PTP Precision Timing Protocol
- QoS Quality of Service
- FEC Forward Error Correction

SyncE: One clock is enough

- Nodes use same physical clock
- Clock encoded in Ethernet carrier
- Clock recovered by PHY PLL

SyncE – Synchronous Ethernet

Precise Phase Measurement – Aiming for Accuracy

- Undersample Clocks
- Feed resulting alias frequencies to PLL
- Determine phase difference

rs si FAIR

ÇERN

PTP – Precision Time Protocol

M. Kreider, T. Fleck

PTP – Precision Time Protocol

PTP – Time Sync at a Handshake

- Exchange messages between nodes
- Timestamp Msg arrivals and departures
- Calculate link delay and time difference
- Share results, adjust client clock

LocalTime Servington

LocalTime Clientville

LocalTime Clientville

rs si FAIR

CÉRN

M. Kreider, T. Fleck

LocalTime Clientville

GSi FAIR

ÉRN

GSI FAIR

ÊRN

PTP – A Simplified Example

M. Kreider, T. Fleck

LocalTime Servington

LocalTime Clientville

LocalTime Servington

01:00 04:00 05:00 02:00 06:00 04:00 07:00 08:00 $D_{\text{LocalTime}} = \frac{1}{2} ((t_1 - t_0) - (t_3 - t_2))$ 06:00 09:00 $=\frac{1}{2}((6 - 2) - (6 - 8))$ 10:00 = 3 08:00 09:00 13:00 10:00 14:00

GSi FAIR

ÊRN

M. Kreider, T. Fleck

LocalTime Servington

LocalTime Clientville set to LocalTime Servington

QoS – Not all packets were created equal

- Ethernet traffic split into: High Priority (HP) packets
 Standard Priority (SP) packets
- HP packets can preempt other packets "on-the-fly"

QoS - Preemption & Determinism

Timing Master – Telling everyone what to do

- Generate Event Sequences
- Powerful CPU
- Real Time Parallel Scheduling in FPGA
- Granularity Window for Load Balancing

Where WhiteRabbit is now:

- Functional high precision Time Sync since 2009
- FAIR Timing Master prototype under development
- Switch, master and receiver specs in progress
- WR test system first prototype complete
- WR protocol implementation under development

GSľ

Where WhiteRabbit will be:

- WR switch prototype end of 2010
- Timing receiver board development in 2010-2011
- FAIR Timing Master prototype early 2011

Thank you for your attention

