
Semantic Types of Information

When defining a data transfer interface one there are certain
properties that have to be defined:

Supported data types. For example integers, floating point
numbers, text, structures and arrays.
Time considerations in the data transfers: data rate and frequency.
Quality attributes like QoS or real-time responsiveness.
Origin (data provider, source) and its destination (data consumer,
sink).
Active or passive involvement in the data flow: data stream (data
provider push) or data on demand (data consumer pull) and
conversion from one to another.

Instrumentation Technologies, d. d., Velika pot 22, SI-5250 Solkan, Slovenia, P: +386 5 335 26 00, F: +386 5 335 26 01,
E: info@i-tech.si, sales@i-tech.si, support@i-tech.si, W: http://www.i-tech.si

Programming Interfaces for
Reconfigurable Instruments
Matej Kenda, Hinko Kočevar, Tomaž Beltram, Aleš Bardorfer, Instrumentation Technologies d.d, Solkan, Slovenia

Abstract
Application Programming Interfaces (APIs) provided by the manufacturers of the instruments for the accelerators are a
very important part of the functionality. There are many interface standards (EPICS, TINE, Tango,...) and even same
standard can be used in various ways.
Important features of modern instruments are reconfigurability and embedded computing.
The developers of instruments that need to be connected to a control system are facing different requirements: adherence to
standard protocols and support of reconfigurable instruments with diverse capabilities with a consistent interface.
Instrumentation Technologies has implemented a well accepted solution with its proprietary Control System Programing
Interface (CSPI) layer and adapters for each standard protocol.
There are new challenges like reconfigurability, quality of service, discovery and maintainability that are being addressed
with improved Measurement and Control Interface (MCI).

From the reverse point of view, instrument can be
used in different environments. Requests for data can
come from different sources for different purposes.

Control System: Different types of control system
protocols
Other instruments: Instrument interoperability,
multiple instruments working together, clustering,
shared processing,
Development Lab: Development, testing of new,
updated instruments
Maintenance: Diagnostics, repair

The service that a Control System provides is
defined on certain interface requirements towards
instruments that must cover following areas:

device discovery, identification and capabilities
operation mode control and configuration
parameters
events, alarms and health state monitoring
data acquisition and attributes (data type, size,
offset, time-stamp)
error handling

•
•

•
•

•

•

•

•

•

Using embedded computers in the instruments enables instruments to behave as network attached
devices with built-in control system interfaces.

Embedded computer can be used to
control the instrument's operation
perform a part of digital signal processing
provide remote access to the instrument

The embedded computer is one of the important components of an instrument, because it provides
convenient way to bring all of the parts (hardware modules, FPGA, software) of an instrument together
into a working application.
Increasing computing power (multi core, SIMD, GPU) can in certain cases be used to replace certain data
processing which is usually done by specialised DSP processors and FPGA.

Instrumentation Technologies develops families of specialised instruments for use in the accelerators. They
are all equipped with embedded computers and have network connectivity.
Instruments can be divided in two classes: Platform A, Platform B. Main difference in hardware is the level of
modularity, reconfigurability and computing power.
Platform A instruments contain energy efficient ARM based embedded computer with limited computing
power and provide control and signal acquisition through the API called Control System Programming
Interface (CSPI).
Platform B instruments are modular and reconfigurable (μTCA, IPMI and other standards) and comprise
powerful embedded computer. Access is provided through the Measurement and Control Interface (MCI).
The goal of both programming interfaces is similar: implementation of as much functionality as possible in a
common fashion and converting that information to a specific control system protocol as late as possible.
Both types of interfaces provide access to the semantic types of information described above.

CSPI

Hardware configuration of Platform A instruments is defined at manufacturing. Available data and the
API are coupled together.

CSPI provides interfaces for:
Monitoring, controlling the instrument through a number of parameters. They are all integer numbers
and identified by numeric Ids. The set of parameters is fixed for a certain instrument.
Acquisition of the signals. Functions to easily access pre-defined number of signals are available.
Change notifications. A callback function can be registered, which is called with the ID of the
parameter that was modified.

Remote access is provided by:
Generic server: transparent CSPI API access over the TCP/IP.
Embedded EPICS driver (Instrumentation Technologies and Diamond Light Source)
Embedded and External Tango Server (Elettra, Alba, Desy, Elettra, ESRF and Soleil)
External TINE Server (Desy)

MCI

Dynamic nature of Platform B instrument required different design approach of the software and its API.
MCI has separated classes and functions of the API from the information that they are used to access.
MCI is networked by design.

The following concepts have been introduced in the API:
Registry
Information is presented in a tree structure, individual nodes are identified by names (similarly as
directories and files) and have pre-defined data type
The tree is populated by the instrument software dynamically, depending on the hardware setup and
type of the instrument
Nodes values can be stored persistently in XML file, can have different flags (readable, writeable,
constant) that define access to node's value
Nodes can emit notifications (for example: value change). Callbacks functions can be registered to
nodes to receive those notifications
Registry can be used by the instrument application software (local access) or remotely (network
access)
Data Streams
Available data streams (signals) are enumerated in the registry and defined by instrument application
software
Data stream classes provide access to different types of signals
The classes simplify processing of the signals (either in the embedded computer or by the client)

Remote access is provided by:
Directly by MCI
EPICS adapter: lightweight server without a database maps MCI registry and signals to EPICS Pvs
Tango, Tine adapter: will be developed when needed

CSPI
Sample command lint tool for reading the Libera unit environment parameters.
$ net-libera -i 10.0.0.100 -l

Temp [C]: 45
Fans [rpm]: 4590 4560
Voltages [mV]: 1489 1782 2439 3233 4892 11865 -12020 -5089
SC PLL: unlocked
MC PLL: locked
TRIGmode: 1
Feature: 0x00000000 0x01000009, Brilliance, GbE, Grouping (RIO)
Kx [nm]: 10000000
Ky [nm]: 10000000

MCI
Part of registry structure as presented by a sample command line tool.

$./libera-ireg dump -h 10.0.3.40 -l 3
IP_10-0-3-40
boards
raf5
chassis:0
chassis:1
chassis:2
chassis:5
os
$./libera-ireg dump -h 10.0.3.40 -l 3 boards.chassis:1.board_info
board_info
type = VM
status = Running
power_status = Mng + Main
fpga_revision = 7103
fw_version = 17

Example of source code:
// Connect to the Libera unit at IP address 10.0.0.100
server_connect (“10.0.0.100”, 23271, “224.0.1.240”, 0);
// Allocate the environment handle
cspi_allochandle (CSPI_HANDLE_ENV, 0, henv);
// Prepare variables for environment parameter readout
CSPI_ENVPARAMS params;
CSPI_BITMASK mask = ~(0LL);
// Acquire the parameter
cspi_getenvparam (henv, ¶ms, mask);
// Release the envirnment handle
cspi_freehandle (CSPI_HANDLE_ENV, henv);
// Disconnect from the Libera unit
server_disconnect ();

Example of source code:
Using namespace mci;

// Connect to instrument 1
RemoteNode h1 = CreateRemoteRootNode("10.0.33.1", 5678, "libera-platformd");
Node r1(h1);
// Connect to instrument 2
RemoteNode h2 = CreateRemoteRootNode("10.0.33.2", 5678, "libera-
platformd");
Node r2(h2);

// Query specific temperature from ins 1
Node tempNode = r1.GetNode({"boards", "chassis:0", "sensors", "ID_2" });
float temp = tempNode.GetValue();

Physical setup and behaviour of the instrument is not completely defined during manufacturing.

Properties of reconfigurable instruments:
Reuse of modules: Hardware module MOD_A can be used in instrument INS_A, INS_B, …
Behaviour of the hardware module MOD_A can be altered by loading different FPGA designs
Instrument INS_A can comprise variable number of modules MOD_A, MOD_B, MOD_C, thus defining
different variations of the instrument.

In general, the responsibilities of the instrument software can be split in several semi-independent layers:
managing hardware platform
instrument application logic
external interfaces

Hardware flexibility influences all of the software layers, including external interfaces.

•
•
•

•
•
•

•
•
•

Control System and Software Interfaces

Instrument Manufacturer's View

Embedded Computing

Programming Interfaces of Libera Family Instruments

Reconfigurable Instruments

•

•
•
•

•

Libera

Diagnostics Epics Development

Doocs Tango

•

•
•

•
•
•
•

•
•

•

•

•

•

•
•

•
•

•
•
•

Accelerator Control System

Parametric
Current

Transporter

Vaccum

Instrument

Instrument

Controller Device

Libera Brilliance
Single Pass

Control System Protocol (Doocs, EPICS, TANGO)

Libera Photon

Libera LLRF

Libera Brilliance

Control System

Libera

Control System Protocol (EPICS, TANGO)

S
ig

n
a
l
A

q
u

is
it

io
n

P
a
ra

m
e
te

rs
,
v
a
ri

a
b

le
s

N
o

ti
fi

c
a
ti

o
n

s,
 e

v
e
n

ts

RF, ADC, FPGA

PLATFORM A

Instrument Application Software
(Internal Control Loops, Syntetic Signals)

Control System Programing Interface
(CSPI)

EPICS Tango

ADC

ADC

ADC TCM VM

PLATFORM B

Libera LLRF Software
(Internal Control Loops, Syntetic Signals)

Measurement and Control Interface
(MCI)

EPICS Tango

RAF RAF RAF TIM GDX

PLATFORM B

Libera Brilliance Software
(Internal Control Loops, Syntetic Signals)

Measurement and Control Interface
(MCI)

EPICS Tango

Examples

Range Streaming

Size

Data access

Example

Pulled by user (on demand) Pushed by instrument (on trigger)

Large Small

Turn by turn, ADC Slow acquisition, fast acquisition, events

CSPIComparison
of CSPI and MCI
interfaces

Signals

MCI

Number of signals

Notifications

Control system in-
terface

Networked API

Configuration

Processing

CLI

GUI

Yes (Generic Server)

Numeric identifiers Registry (dynamic structure)

Registry (built-in functionality)

Multiple

Yes

Fixed number

Callbacks

EPICS driver (two versions), Tango
driver (3rd party)

MCI to EPICS adapter, more planned

Dynamic (based on setup and processing)

Control loops

libera

EPICS EDM, Matlab, custom as
implemented by CS integrators

Qt GUI, EPICS EDM

Control loops, more DSP algorithms
(depends on application)

