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 Optimized development process by test driven development and task 

segmentation

 Faster development and lower hardware costs

 Small footprint, high degree of flexibility and high level of hardware 

abstraction make the CCCP an ideal control platform for complicated 

hardware instruments

 Modularized aproach

 Hardware composed of a generic common module and a product specific IO baseboard

 Simple interface to various types of hardware components and fast and simple

integration of such hardware into control systems

 Flexible scripting language Lua provides software real-time control of hardware

modules

 Simulator can execute exactly the same Lua code also on the PC, without the

instrument’s mechanics and electronics are ready.

  

Choosing commonly available software (Linux, C, Lua, Qt) means:

 Available software development tools

 Reliability

 Good support

Product component simulation:

 Faster development without hardware

 Test driven development ® Agility with task segmentation 

 Shorter time to market

 Lower development costs

 Better developer utilization and efficiency

 Faster hardware integration

 Faster validation & verification process

CONCLUSIONS

Introduction

Optimizing development process

Product component simulation

Hardware based on commercialy available components:

 Cheaper

 Replaceable

 Reliable

 Support

Choosing a modular hardware design with commmercialy available 

components gives you the option of developing a task specific solution and:

 Minimizing complexity and maximizing flexibility

 Minimizing overdevelopment

 Faster development and faster time to market

 

Task specific solution
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Product component simulation allows you to optimize development process 

with task segmentation and test driven development.

 Shorter time to market

 Lower development costs

Instrument Process

Operating System

Instrument’s Lua script
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Simulation Process

Instrument’s Lua script
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Architecture of the instrument firmware (left) and the simulation 

process (right). In both cases, there is a single process running at 

whose core is the Lua scripting engine.
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