

CCCP - Cosylab Common Control

Platform
M. Rescic, Cosylab, Ljubljana, Slovenia

Z. Kroflic, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia

 Optimized development process by test driven development and task

segmentation

 Faster development and lower hardware costs

 Small footprint, high degree of flexibility and high level of hardware

abstraction make the CCCP an ideal control platform for complicated

hardware instruments

 Modularized aproach

 Hardware composed of a generic common module and a product specific IO baseboard

 Simple interface to various types of hardware components and fast and simple

integration of such hardware into control systems

 Flexible scripting language Lua provides software real-time control of hardware

modules

 Simulator can execute exactly the same Lua code also on the PC, without the

instrument’s mechanics and electronics are ready.

Choosing commonly available software (Linux, C, Lua, Qt) means:

 Available software development tools

 Reliability

 Good support

Product component simulation:

 Faster development without hardware

 Test driven development ® Agility with task segmentation

 Shorter time to market

 Lower development costs

 Better developer utilization and efficiency

 Faster hardware integration

 Faster validation & verification process

CONCLUSIONS

Introduction

Optimizing development process

Product component simulation

Hardware based on commercialy available components:

 Cheaper

 Replaceable

 Reliable

 Support

Choosing a modular hardware design with commmercialy available

components gives you the option of developing a task specific solution and:

 Minimizing complexity and maximizing flexibility

 Minimizing overdevelopment

 Faster development and faster time to market

Task specific solution

PCaPAC 2010, Saskatoon, Canada © 2010 Cosylab

IO 1
IO 2 IO

 4

IO
 5

IO 3

p
ro

c
e
s
s
o
r

b
o
a
rd

 I
F

p
ro

c
e
s
s
o
r

b
o
a
rd

 I
F

FPGA

processor
FLASH
RAM
Eth.

on-board IFs(serials,
sound…)

OSdrivers

API

LUA

Generic common module (left) and a specific custom module

(right)

To
ta

l E
ff

o
rt

Finished product

Product Development

Testing Phase

Integration Phase

Hardware Development

Software Development

Component simulation

Product Development

Testing Phase

Integration Phase

Software Development

Hardware Development

Effort saved using CCCPEffort saved using CCCP

To
ta

l E
ff

o
rt

Integration Phase

Software Development

Hardware Development

Ef
fo

rt

Product Development time

Component simulation

Testing Phase

Fin
ish

ed
 P

ro
d

u
ct

Time saved using CCCPTime saved using CCCP

Testing Phase
Integration Phase

Software Development

Hardware Development

Ef
fo

rt

Product Development time

Product component simulation allows you to optimize development process

with task segmentation and test driven development.

 Shorter time to market

 Lower development costs

Instrument Process

Operating System

Instrument’s Lua script

Em
b

ed
d

ed
 w

eb

server

C
o

m
m

Lo
g

g
er

C
A

N

O
p

tics

Embedded

database
File I/O

In
stru

m
en

t U
sag

e

D
ata A

ccess

Q
u

ality C
o

n
tro

l

Lo
w

-l
ev

el
 C

A
N

A
P

I

M
o

tio
n

 C
o

n
tro

l

C/C++ code Lua code

C/C++ API (bi-directional communication)

Lua API (one-way communication)

Legend

Simulation Process

Instrument’s Lua script

Em
b

ed
d

ed
 w

eb

server

C
o

m
m

Lo
g

g
er

O
p

tics (sim
)

Embedded

database

In
stru

m
en

t U
sag

e

D
ata A

ccess

Q
u

ality C
o

n
tro

l

M
o

tio
n

 C
o

n
tro

l (sim
)

Instrument

Model
GUI

Instrument-specific

Lua code

Lua

Scripting

Engine

Lua

Scripting

Engine

Architecture of the instrument firmware (left) and the simulation

process (right). In both cases, there is a single process running at

whose core is the Lua scripting engine.

	CCCP_PCaPAC_poster.vsd
	Page-1

