
PCaPAC2010

FAIR Timing Master

M. Kreider, T. Fleck

GSI, Darmstadt, Germany

'

&

$

%

Abstract

In the scope of building the new FAIR facility, GSI will change its timing sys-
tem to Whiterabbit. The FAIR system will resemble a tree topology, with a
single master unit on top, followed by several layers of WR switches, down
to about two thousand timing receivers throughout the facility. The Timing
Master will be a mixed FPGA/CPU solution, which translates physical require-
ments into timing events and feeds them into the WR network. Macros in the
FPGA resemble a 32x multicore with a strongly reduced instruction-set, each
event processor responsible for a specific part of the facility. These processors
interact in realtime, reacting to interlocks and conditions and ensuring deter-
minism by parallel processing. A powerful CPU prepares the timing event ta-
bles and provides an interface to the controls system. These tables are loaded
into the RAMs of each participating processor, controlling their behaviour and
event output. GSI is currently working on the WR timing system in close col-
laboration with CERN, making this system the future of GSI/FAIR. The poster
will cover technical details on the expected timing scenario, macro internals
and discussion on possible future development.

Goals

à Provide subnanosecond Timing

à Control Machines by Events

à Manage 2000+ Timing Nodes

Concept

Every physical large part of the accelerator facility, like the linear

accelerators, synchrotron rings, storage rings, beamlines ,

targets, etc., will be represented by a dedicated timing event

generator unit.

Interaction between these machine parts requires fast

synchronisation between their timing schedules. For example, a

synchrotron ring needs to time its ejections precisely with the

receiving collector ring. The design therefore includes a

mechanism for exchanges between generators.

Planning

The Timing Master (TM) is a mixed approach between a

powerful CPU, for easy integration into existing operating

software as well as easy use of existing libraries and middleware.

However, modern CPUs do have underlying core and power

management functions, which make response times in the

desired range unpredictable. An FPGA is used for the event

generation and communication with the underlying

WhiteRabbit Transfer layer.

Implementation

The TM’s CPU gets instructions for a production line (Isotope,

Energy, Beam Intensity, Source, Path, Target) from Operating.

Physical requirements are translated into machine requirements

by the LSA middleware. The resulting event sequences and their

dependencies are transformed into event generator programs,

compiled and loaded into the FPGA’s memory.

Inside the FPGA, the event processing units (EPUs) are

dedicated to certain parts of the facility or serve public

functions, like collecting and processing beam requests from

experimental stations. Their programs run in parallel, are able to

listen to external signals and interlocks, generate timing events

and synchronise themselves with other processors by an n by n

flag matrix.

Modules and Interfaces

The TM CPU houses two important pre-existing software

modules. The top interface to the control system is based on

FESA device models. Beneath the driver layer is an interface to

the LSA core, which computes machine parameters from beam

production specifications. Below those are the event sequencer,

compiler and FPGA communications module.

Overview of Hard- and Software Modules

The concentrator macro collects all given events in a certain

window of time and passes the event stream to WR for transfer.

Mapping the Accelerator

Timing nodes of the facility part are listening to a specific subset

of eventcodes usable for their control sequence. On reception,

the listening node sets up the time of execution and starts the

corresponding process.

Linked EPUs building an event sequence

To allow reload of new programs during runtime without

interruption, memory access is managed by CPU only to write in

places not currently locked for execution. Preinserted

conditions in the EPUs program allow branching off to new

program code on demand.

Conclusion

The concept of dedicated EPUs representing physical

accelerator parts showed promise in early simulations.

A small number of EPUs were run with hand written test

programs, covering scenarios with up to four cooperating EPUs.

The task at hand is scaling these scenarios in simulation to verify

real scenarios. As soon as the simulation is able to reproduce

slowed down event sequences of the current controls system,

modules will be pepared for synthesis.

Outlook

A prototype system is planned to be set up in parallel to the

current GSI pulse centre in 2011. By comparing control

sequences, a continuous test for aptability to the task of running

the current facility can be done. First test is run with pre-written

event programs, this allows testing in productive conditions

without further concern about scheduling and machine

calculations done above or transfer down below.

After a first design stop of the EPU macros, the next goal is an

early implementation of the TM software modules most

importantly the Event Sequencer and compiler. The sequencer

will be a solver tool able to synthesise the LSA output sequence

by reducing it to programmatic structures and event numbers.

The current compiler for the EPUs language can be converted to

a JIT-Compiler module for the master.

Productive systems are planned to be put into service at

GSI/FAIR in 2016.


