
Integration of Programmable Logic Controllers

into the FAIR Control System using FESA

R. Haseitl, C. Andre, H. Bräuning, T. Hoffmann, R. Lonsing

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

Abstract

Communication with the PLC

PLC Hardware Setup

prn42017_0/4

For the upcoming 'Facility for Antiproton and Ion Research' (FAIR) at GSI, the Front End Software

Architecture (FESA) framework built by CERN has been chosen to serve as front-end level of the

future FAIR control system. All beam diagnostic devices of FAIR will be controlled by FESA classes

that are addressable by the new control system. The connectivity to the old control system is

retained, since both control systems will be in operation contemporaneously for several years.

Commercially available Programmable Logic Controllers (PLCs) have been installed as part of Beam

Induced Fluorescence (BIF) monitors to replace outdated network attached devices and to improve

the reliability of the BIF systems. The new PLC devices are controlled by FESA classes which are

addressed from the existing C++ software via Remote Data Access (RDA) calls. This contribution

describes the system setup and the involved software components to access the PLC hardware.

r.haseitl@gsi.de, c.andre@gsi.de, h.braeuning@gsi.de, t.hoffmann@gsi.de, r.lonsing@gsi.de

Motivation: Previous Hardware

ProfileView

• controls up to three BIF monitors at the same time

• written in C++, running on Linux

• linked with CERN Middleware Library for device access

• sets new values over device handle

• subscribes to data changes of the FESA class 

callback function is notified whenever a value is

changed from any connected application

• based on embedded controller chip

• controllable via Ethernet and web browser

• four outlets for iris and image intensifier control

0 – 5 V, controlled by 8 bit DACs

• four outlets for calibration LEDs (on/off)

• unstable during long operation

• undefined voltages after crash

Siemens SIMATIC PLC components:

S7-300 main controller

CP343-1 Lean communication module

ET 200M satellite controller

SM322 relay module with eight outlets

SM332 12-bit DAC with four outlets

optical system:

Basler A311f FireWire CCD camera

Proxitronic image intensifier

Pentax B2514ER with remote controllable iris

electronics room installation: main controller,

communication module and switch for satellite connection

satellite installation in radiation-safe are near experiment to control two BIF monitors:

contains two sets of: satellite controller, relay module, DAC module (2x)

at the experiment: FireWire camera

with image intensifier and iris

• PLC hardware is distributed along the accelerator

• one main controller for multiple distributed

subsystems ('satellites')

• connection between main controller and satellites via

Profinet

• satellites consist of local controller and relays/DACs

• satellites are located close to experiment to

reduce cable length

• experiment hardware connected via 4-wire technique

to sense and eliminate conduction losses

ProfileView

Subscription Callback

gets notified on data

changes in the FESA

class

separate thread to avoid

blocking the application

new data is processed

and passed to the GUI

Other applications / expert GUIs

• multiple applications have read/write

access to the same class

• critical components (LEDs) are only

accessible in expert applications

FESA class

running on VME CPU or

Linux PC

data transfer to/from PLC

Ethernet module

notifies all subscribed

client applications on data

change

VME

(Intel or PowerPC) PC (Linux)

Communication via the FESA class

1. Get the device handle from the directory server via RDA:
rdaDeviceHandle* pDevice = RdaService->

getDeviceHandle("name");

"name" is the instance name of the class e.g. 'BIF1.Control.sddsc004':

Get instance named 'BIF1.Control' running on frontend 'sddsc004'.

2. Subscribe to data changes and get current state of all values:
pDevice->monitorOn("propertyName", pReplyHandler,....);

monitorOn() takes the name of the FESA property to be monitored and a

pointer to a handler class.

3. Process new data in handler class:
handleReply(rdaData& newData,);

In the rdaData object, all values of the monitored property are enclosed:
float value = newData.extractFloat("IRIS1");

When a value is changed by the user:

4. Set a value:

Pack one or more values into an rdaData package and send it:
rdaData* data = new rdaData();

data->insert("IRIS1", 1.9);

pDevice->set("propertyName", data,);

Please note: For reasons of clarity and readability some function parameters are omitted in the code fragments shown.

