Mechanical Vibration Measurement System at the Canadian Light Source

Introduction

At synchrotron radiation facilities, the vibration of the electron and/or photon beam, especially in the vertical direction, enlarges the size and changes its intensity. This degrades the performance of the beamline [1,2].

Fig. 1. Influence of mechanical vibrations on STXM images of N-CNT at 401.0 eV.

Instrumentations

The Canadian Light Source Vibration Data Acquisition system was used to measure vibration in the CLS facility [4]. It includes a Vector Signal Analyzer (VSA) (Model: Hp Agilent 89410A; Manufacturer: HP) and accelerometers (Model: 393B31; Manufacturer: PCB PIEZOTRONICS). Accelerometers produce a voltage proportional to the acceleration of their connected object.

The sensitivity of the accelerometer $a=1.02 \text{ v/(m/s^2)}$. The frequency range of the measurement is 1 Hz to 300 Hz. The frequency resolution of the accelerometer is better than 0.1 Hz.

Measurement Set Up

Accelerometers were mounted at four beamlines shown in Fig. 2.

Fig. 2. Set up of accelerometers at various beamlines.

Mark Li, Elder Matias,— Canadian Light Source, Saskatoon, Canada

X.B. Chen, W.J. Zhang — College of Engineering, University of Saskatchewan, Saskatoon, Canada

Identified Vibration Sources

- Seven vibration sources were identified bellow. A: Fan coil unit. C: Varian TriScroll pumps. B: Polycold Compact Coolers (PCC) and Turbomolecular pump (TMP).
- D: Chiller.
- F: Cryopump.
- E: Cryostat system. G: Detector cooling system.

28.5 29 29.5 30 30.5

Frequency (Hz)

200

Frequency (Hz)

250

TriScroll pump On

TriScroll pump Of

Conclusions

identified vibration sources are Seven beamlines/endstations at the CLS, i.e., the Canadian Macromolecular Crystallography Facility (CMCF) 08ID-1 beamline, the Hard X-ray MicroAnalysis (HXMA) 06ID-1 beamline, the Resonant Elastic and Inelastic Soft X-ray Scattering (REIXS) 10ID-2 beamline, and the Scanning Transmission X-ray Microscope (STXM) endstation at the Spectromicroscopy (SM) 10ID-1 beamline.

The results demonstrate that mechanical movable equipment in optics hutch and experimental hutch can cause vibrations significantly affecting the performance beamlines/endstations. The information provided in this paper is important to understand and control vibrations not only for beamlines at the CLS but also for other synchrotron radiation facilities worldwide.

Acknowledgement

The first author would like to thank financial supports from the University of Saskatchewan through a graduate scholarship program and the Canadian Light Source Inc.. The work is also supported in part by the Natural Science and Engineering Research Council of Canada (NSERC).

References

- [1] Masuzawa, M., Sugahara, R. & Yamaoka, H. (2006). Floor tilt and vibration measurements for the ATF2. Proceedings of the 9th International Workshop on Accelerator Alignment, September 26-29, Stanford Linear Accelerator Center, Stanford, California, USA.
- [2] Fukuda, M., Endo, N., Tsuyuzaki, H., Suzuki, M. & Deguchi, K. (1996). Effect of mechanical vibration on patterning characteristics in synchrotron radiation lithography. Jpn. J. Appl. Physics. 35, 6458-6462.
- [3] Li, J.W., Matias, E., Chen, N., Kim, C.-Y., Wang, J., Gorin, J., He, F., Thorpe, P., Lu, Y., Chen, W.F., Grochulski, P., Chen, X.B. & Zhang W.J., (2010). Investigations of Mechanical Vibrations for beamlines at the Canadian Light Source, Journal of Synchrotron Radiation, submitted in 2010.
- [4] Paulsen, J. (2006). Vibration data acquisition system user's manual. Canadian Light Source Inc. Document Number 8.9.44.1. Rev. 0., Approval date: April 28.

For further information

Please contact *mark.li@lightsource.ca*. More information on this project can be found in [3].