
CCCP - COSYLAB COMMON CONTROL PLATFORM

Miha Rescic, Cosylab, Ljubljana, Slovenia
Ziga Kroflic, University of Ljubljana, Ljubljana, Slovenia

Abstract
Cosylab common control platform (CCCP) is a

lightweight hardware control platform designed to
provide a simple interface to various types of hardware
components and fast and simple integration of such
hardware into control systems. The core of the platform is
the scripting language lua. This lightweight and flexible
scripting language provides software real-time control of
hardware modules over all provided connections (RS232,
Ethernet, USB, SPI, CAN, I2C, GPIO) as well as fast and
simple ways of implementing modules for more complex
structures (FPGA). The platform provides various levels
of control with an embedded GUI or full remote control
over an embedded web server, archiving capabilities with
a database back-end and different device simulator
modes. The platform's small footprint, high degree of
flexibility and high level of hardware abstraction make
the CCCP an ideal control platform for more complicated
hardware instruments and at the same time a perfect main
control board for devices that incorporate various
complex hardware elements. The design and possible
implementations of this platform will be discussed in this
article.

INTRODUCTION
Development of a control system is never an easy nor a

straightforward task. With the complexity of today’s
technologies, if we’re speaking of technologies in general
or of technologies applied in specific fields, the number
of different components or building blocks of the control
systems and the complexity overall grow rapidly.

Within this rapidly expanding field it is very difficult to
find a common ground and usually much effort is spent
on developing highly specific solutions capable of
tackling only a limited array of problems. Thinking of
common grounds in control systems field brings to mind a
reusable, as generic as possible platform that would
represent the base of the control system. This was the
motivation behind CCCP: minimize the efforts needed for
base platform development and allow emphasis on more
specific and complex components development,
integration, testing and QA.

ARCHITECTURE
The crucial element of the platform is the architecture.

CCCP tries to keep logical entities separated from each
other as much as possible. This way, reusability and
efficient design are possible.

Custom Input / Output board

Cosylab Common Control Platform

Device Drivers, HW Support

High Level Device Logic

Low Level Device Logic

Specific Hardware Components

Figure 1: CCCP Architecture

Custom input / output board
On the lowest level of the CCCP architecture is the

customized input / output board. Although the board itself
is not a part of the CCCP platform it provides problem or
component specific solutions regarding hardware
connections, specific protocol implementations or more
advanced logic (see Fig. 2). The custom board
development is bundled together with the CCCP platform
development in order to provide the optimum solution for
the specific problem.

Some of the IO board’s main purposes are described
below.
• Target hardware development away from the

platform core and towards specific implementation
needs.

• Provide advanced logic and (hard) real-time support
with FPGA.

• Allow connectivity with existing CCCP IOs or
implementation of any custom IO required.

• Minimize the complexity of custom HW
development.

• Minimize the amount of redundant development
efforts regarding non-reusable hardware.

IO 1
IO 2 IO

 4

IO
 5

IO 3

pr
oc

es
s o

r b
oa

rd
 I F

p r
oc

e
s s

o r
 b

o
a r

d
IF

FPGA

processorFLASH

RAM
Eth.

on-board IFs(serials, sound…)

OSdrivers

API

LUA

Figure 2: Custom IO board

Device drivers and hardware support
The layer residing directly over the custom IO board,

the lowest layer of the CCCP core architecture, provides

WEPL031 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

88

Embedded device control

all the needed logic to communicate with hardware. It
contains two crucial elements:
• OS specific drivers providing basic system input /

output functionality.
• HW modules providing an interface layer between

the underlying hardware components and higher-
level device logic.

The HW modules not only allow high level logic to
easily interact with the underlying hardware but create an
abstraction layer between the two that can be replaced by
a mock layer in absence of actual hardware. A mock
layer or a simulated layer makes development possible
without actual hardware and allows more flexible testing
(without hardware limitations) and much faster
integration.

Low level device logic
The low level device logic incorporates all the services

and layer logic needed for the CCCP platform to function
properly. They lay the foundation for the higher layer
logic and provide the tools that allow developers and
engineers faster development.

Some of the main components residing in the low level
device logic:
• HTTP server for northbound communication and

control.
• Priority task scheduler with support for interrupts

from HW modules.
• Lightweight database for storing data, events and all-

purpose logging.
• Generic FIFO queues for inter-process data

exchange.
Most of the low level logic is written in C

programming language but some segments also use
components written in the scripting language lua.

High level device logic
The highest CCCP architectural layer is where the

magic happens. This layer, also called the “instrument”
logic layer, is developed entirely with the scripting
language lua.

The choice of scripting language over a programming
language has at least these advantages:
• All the complex implementations are done in lower

layers thus abstracted away from the developer.
• Because of simpler syntax, robustness and user

friendliness scripting languages make development
available to other team members as well, e.g.
engineers.

The use of a higher level of logic together with an
application and UI framework (e.g. Nokia’s Qt) makes it
possible to further upgrade the device with GUIs and
other device interfaces (touch screens, ...).

COMMON CONTROL PLATFORM
In order to provide a truly common platform there are

some aspects of the platform that need to taken into
consideration.

Customizability
Common platform must provide enough flexibility to

allow easy customisation for various implementations.
Therefore, the core CCCP has no direct IO connectors or
switches. It only provides a standard TX-DIMM
connector with standard pinout. In order to connect the
common control platform to corresponding control
system components a separate IO board must be
developed.

By mechanically separating the logical parts into two
components (CCCP and the IO board) we achieve a high
degree of flexibility and customizability. With the custom
IO board approach the solution can be very problem
specific but still at the same time very generic since all of
the core logic is kept on the CCCP platform. The IO
board merely serves as an interface to hardware
components whereas the implementation of the logic
resides on the generic CCCP board and can be further
reused in other various control systems or subsystems.

Size and form factor
One of the first limitations a standard common platform

encounters is its size and form factor (see Fig .3) but the
size of CCCP (DIMM200-module standard size: 67.6 mm
x 26 mm x 3.6 mm) makes is suitable for almost any
application.

Figure 3: CCCP size

Processor and operating system
The other important aspect of the common platform is

the choice of the processor and the operating system. This
is why CCCP is powered by an ARM9 400 MHz
processor with the operating system of choice being
Linux running the 2.6 kernel.

The combination of ARM processor and Linux OS
allow users and developers to use a wide range of existing
tools, from cross-compilers to integrated development
environments.

Connectivity
In order to connect various components to the common

platform a number of standard IOs must be supported.
CCCP provides the following possibilities (only the most
common options are mentioned):

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL031

Control hardware and low-level software Embedded device control

89

• 10 / 100 Ethernet
• 5 x UART
• 3 x SPI
• 3 x I2C
• 4 x GPIO
• 3 x 12 bit ADC
• 2 x CAN

PRODUCT COMPONENT SIMULATION
The most important aspect of CCCP is the possibility to

substitute real hardware components with mock or
simulated components (see Fig. 4).

The architectural layering described above, especially
its Device driver and HW support layer allows a smooth
interchangeability between real hardware components and
software-simulated components. Because the hardware
modules are essentially exposed to higher level device
logic it is, after all the interfaces have been defined and
with the use of lua flexibility, quite straightforward to
make the switch. The simulated device components are
implemented at a higher level of logic (in the high-level,
lua logic layer) therefore they are overriding any actual
hardware components.

Agile development
The process of mocking or simulating absent hardware

components makes it possible to introduce new
approaches to otherwise rigid hardware development
field. One of these approaches is agile development.
Some of the benefits:
• Difficult and complex tasks can be dealt with earlier.
• Problems and complications are discovered earlier

and therefore resolved earlier.
• Development process can be split into multiple tasks

from the beginning and therefore modified based on
completion of and feedback from such tasks.

Test driven development
Testing in hardware development is usually the last

stage of development process. With the introduction of
simulated components the testing can take place from a
very early stage onwards.
• Every step of development can be backed up and

controlled by matching tests.
• Tests provide feedback and allow the agile process

mentioned above to function properly.

REAL-WORLD IMPLEMENTATIONS
Some of the possible use cases of CCCP control

platform are described below.

Remote hardware control
One of the basic examples of CCCP usage would be

remote monitoring and control of hardware devices, e.g.
household appliances.

Figure 4: Household control and monitoring

Specific instrument interface
CCCP could also provide an interface to various

complex instruments and simplify the integration of these
components into the control system.

Figure 5: Specific instrument interface

CONCLUSION
 Cosylab Common Control Platform presents a
different approach to a somehow rigid field of hardware
development. With the modular approach regarding
hardware and software architecture, simple input and
output interfaces, flexible scripting language core logic
and device component simulation capabilities it gives our
customers a number of benefits.
• Faster time to market with lower development costs.
• Better developer utilization and efficiency. Faster

hardware integration, validation and verification.
• Minimized overdevelopment and complexity with

maximized flexibility.
• Optimized development process by test driven

development and task segmentation.

Small footprint, high degree of flexibility and high

level of hardware abstraction make the CCCP an ideal
control platform for complicated hardware instruments.

WEPL031 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

90

Embedded device control

