
SOFT REAL TIME CONTROL WITH CLIENT/SERVER CONTROL

SYSTEM

Y. Furukawa, Spring-8/JASRI, 1-1-1 Kouto, Sayo-cho, Hyogo, JAPAN.

Abstract

Real-time properties have studied for client/server

control system on single CPU system with Linux and

Solaris operating system (OS) with real-time scheduler.

Time jitters were within one msec for Linux OS and for

Solaris OS on the MADOCA control system[1] that is the

SPring-8 standard control system (CPU was 1.6GHz Intel

Atom processor). These results are small enough for

many synchrotron radiation experiments such as x-ray

diffraction experiments with continuous scanning method.

The client application can be described using scripting

language, so real-time applications are developed and

modified easily. The system has been used in the diffuse

scattering beamline at the SPring-8.

INRODUCTION

There are many request on real time controls with msec

order time resolution on synchrotron radiation

experiments, such as scanning micro probe XRF,

continuous scanning x-ray diffraction experiments, etc. In

these applications, exact timing is not required because

the counting results can be normalized by each step time

or integrated intensity of incident x-ray. So the sub-msec

order soft real time controls are suitable for these

appllications.

To realize real-time application, real time operating

system (OSs) has been used, it is, however, difficult to

develop the real time applications on theses OSs because

it required low-level (device driver or kernel level)

software development and there are poor development

support tools.

Modern OSs, like Linux or Solaris, have been

improved its real time properties and became to be used

for real time applications. Under these OSs, soft real time

can be realized only set the framework software and these

applications to use real time schedulers, such as RT-class

on Solaris or FIFO and round robin scheduler on Linux.

There are many single program implementations to

realize the real time properties. It requires the detailed

knowledge for device control libraries and frame work, it

is hard task for x-ray beamline scientist because most of

them are not specialist of the control software.

If real time applications can be described using simple

scripting languages, many non control specialist can

develop the real time applications. It is possible if the

client/server type system provides real time properties. In

this paper, results of the real time property measurements

in the case of the MADOCA control system on the single

CPU system and it has enough for the synchrotron

radiation experiments.

MEASUREMENTS OF THE REAL TIME

PROPERTIES

Real time property measurements were made on Solaris

10 and Linux (vanilla kernel 2.6.34 and real time patch[2]

applied kernel 2.6.33.7-rt29). In the Solaris case,

parameter hires_tick=1 was set in /etc/sysconfig for 1

msec tick. For the Linux case, tickless kernel and 100Hz

tick were set in kernel parameters. All the software were

installed on the Atom Z530 (1.6GHz) processor based

control sysmte called “Blanc-4” developed at the

SPring-8[3]. The blanc-4 has 512MByte main memory

and 16Gbye flash memory based storage. All the

softwares were set RT-class in the Solaris case (using

priocntl command) or FIFO scheduling for the both Linux

case (using chrt command).

Figure 1: Software scheme of the measurements.

Software scheme based on the MADOCA control

framework is shown in Fig.1. Each program communicate

using system-V IPC (message queue). Command

Interpreter (CI)[4], used as a client software, issued

messages to the Message Server (MS). The MS transfers

the control message to the Equipment Manager Agent

(EMA) which controls actual devices and send back a

result message to the CI via the MS. In the measurement,

the EM was set as a timer, which returns a result message

to the client (CI) after sleeping a given time by the

message from the CI as shown in Fig. 2. The time

WEPL021 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

70

Front-end (Hardware Interface) Software

durations from send a message to receive the result

message were measured for 1,000,000 loops.

Figure 2: Time chart of measurements.

The results of time measurement are shown in Fig.3, 4

and 5 as a function of trail number for Solaris, Linux

2.6.34 and Linux 2.6.33-rt29 for first 30,000 loops. The

statistics of the results were summarized in the Table 1.

For the case of vanilla kernel of the Linux is not suitable

for the real time applications. For the case of Solaris, time

deviation is with in 0.8msec, it can be applicable some

synchrotron radiation experiments. Time deviation for the

Solaris 10 seems to come from SYTEM-class processes

that have higher priority than RT-class processes.

Figure 3: Result of loop time measurement for

Linux-2.6.34

Figure 4: Result of loop time measurement for

Linux-2.6.33.7-rt29

Figure 5: Result of loop time measurement for Solaris 10

Table 1: Statistics of results

OS/kernel Meam

time

(msec

)

Standard

deviation

(msec)

Min.

(msec)

Max.

(msec)

Linux-2.6.34 3.917 1.30 685.6 2.698

Linux-2.6.33

.7-rt29

2.759 0.0091 2.731 2.969

Solaris 10 4.000 0.0175 3.349 4.417

Results for the RT-patched Linux kernel is with in

0.1msec and it is good enough for most synchrotron

radiation experiments like scanning XRF, x-ray

diffraction experiments. In the vanilla kernel is not

pre-empt if the process is in the kernel space, while in the

RT-patched kernel, the process is pre-empt in both kernel

space and user space, so in the RT-patch kernel is assign

the CPU time to real time process faster.

APPLICATION TO THE CONTINUOUS

SCANNING X-RAY DIFFRACTION

MEASUREMENT

As an application of the real-time controls, continuous

scanning diffraction measurement system has been

developed with Linux-2.6.33.7-rt29 system. A schematic

view of the measurement system is shown in Fig.6.

Diffracted X-ray by the sample is counted using x-ray

detector and the detector is scanned using stepper motor.

The x-ray counts are recorded as a function of the

detector angle and from an analysis of the result, atomic

structure is obtained.

In a conventional way, step scan was used, i.e, before

counting a x-ray intensity, the detector was moved some

angle. It had a dead time to waiting for end of detector

motion. In continuous scanning method there is no

overhead, it is, however, required msec order timing

accuracy because counting duration is a few ten msec to a

few seconds.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL021

Control hardware and low-level software Front-end (Hardware Interface) Software

71

Figure 6: Schematic view of the diffration measurement.

A test of the continuous scanning was made using

1.00MHz clock instead of the x-ray counting, so the

timing accuracy could be checked by uniformity of the

counteing results. The result of the continuous scanning

for 100msec step is shown in Fig.7. The speed of stepper

motor rotation was 1000 pulse/sec. Deviation of the

counting results is within 0.3%, this is good enough for

most x-ray diffraction measurements. The 0.3% deviation

of the counting data is corresponding to 0.3 msec timing

deviation.

The counting result is not 100,000 but around 104000

counts, this measn the each loop time is 104 msec and it

take 4 msec to obtaining motor position and counter data.

This can be adjustable by changing the timer sleep time.

There are periodical spike on the counting data in the

Fig.7. The period of the spike is about 1000 pulse, i.e. 1

sec. A motor position backing-up script was running at

the same time, so the access racing to the stepper motor

controller occurred. Under these racing condition to the

device, timing deviation is small enough, less than

required 1msec.

Figure 7: The result of the continuous scan for 100msec

step with 1MHz input.

CONCLUSION

Real-time properties for the client/server system on

Linux and Solaris OS were investigated and for Solaris 10

and RT-patched Linux case, it is shown that there are

good timing accuracy. Especially for the RT-patched

Linux, timing deviation is within 0.3msec.

To develop the client program, a scripting language can

be used, so real-time software development becomes very

easy. Note that some scripting languages invoke garbage

collection and it deteriorates the real-time property. The

CI is designed not to cause garbage collection.

REFERENCES

[1] R.Tanaka S. Fujiwara, T. Fukui, T. Masuda, A.

Taketani, A. Yamashita, T. Wada and W. Xu, Proc of

ICALEPCS’95 (1995) p.201

[2] http://www.kernel.org/pub/linux/kernel/projects/rt/

[3] M. Ishii and T. Ohata, Proc. ICALEPCS2009 (2009),

p.465..

[4] Y.Furukawa, M.Ishii, T.Nakatani and T.Ohata, Proc.

ICALEPCS2001 (2001), p.349

WEPL021 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

72

Front-end (Hardware Interface) Software

