
FAIR TIMING MASTER

Mathias Kreider, Tibor Fleck, GSI Darmstadt, Germany

Abstract

In the scope of building the new FAIR facility, GSI
will implement a new timing distribution system based on
WhiteRabbit. The FAIR system will resemble a tree topol-
ogy, with a single master unit on top, followed by sev-
eral layers of WR switches, down to about two thousand
timing receivers throughout the facility. The Timing Mas-
ter will be a mixed FPGA/CPU solution, which translates
physical requirements into timing events and feeds them
into the WR network. Macros in the FPGA resemble a
32x multicore with a strongly reduced instruction-set, each
event processor responsible for a specific part of the facil-
ity. These processors interact in real time, reacting to inter-
locks and conditions and ensuring determinism by parallel
processing. A powerful CPU prepares the timing event se-
quences and provides an interface to the control system.
These tables are loaded into the RAMs of each participat-
ing processor, controlling their behaviour and event output.
GSI is currently working on the WR timing system in close
collaboration with CERN, making this system the future
of GSI/FAIR. This contribution covers technical details on
the expected timing scenario, macro internals and discus-
sion on possible future development.

INTRODUCTION

Purpose

Future GSI/FAIR facility will use timing events to con-
trol machine actions. The FAIR Timing Master will cen-
trally generate all necessary events for the whole accelera-
tor facility. These will be used to trigger all beam guiding
components as well as all beam diagnostic measurement
devices where individual event filters apply for each sin-
gle front end controller. The timing receiver is integrated
into the standard FAIR frontend controller used mainly for
power supplies. For all other use cases, especially all beam
diagnostic devices, special timing receiver interface cards
will be supplied in different form factors. Typical event
reaction will be direct trigger output or IRQ. Furthermore
a separate high precision clock distribution system called
BuTiS for RF components where highest requirements to
accuracy and synchronization apply will be closely coupled
to the FAIR timing system.

The WhiteRabbit Transport Layer

The future Timing System of GSI/FAIR and CERN will
be based on the WhiteRabbit architecture. WR is a deter-
ministic field bus [2], the physical system consists of a non-
meshed GbE network topology, running timing services on

OSI layer II. Custom switches and endpoints are used for
timing measurements and the WR protocol.
WR provides phase compensation and absolute time dis-
tribution with an accuracy down to a nanosecond. Forward
error correction algorithms are employed to get highest sys-
tem reliability. Deterministic lag times are made possible
by using Quality of Service (QoS). This makes preferring
marked high priority packets possible. Since the lag time
to destination is reliably known in advance, this allows ma-
chine control packets to always arrive on time.

The FAIR Timing Master

To provide an interface to the general control system of
the facility, a powerful CPU handles the abstract beam pro-
duction down to the creation of sequence programs for con-
trol of Event Processing Units (EPU).

Every abstract physical part of the accelerator facility
like the linear accelerators, synchrotron rings and storage
rings, will be represented by a dedicated timing event gen-
erator unit.

Figure 1: Mapping components to EPU programs

Interaction between these machine parts requires fast
synchronisation between their timing schedules. For exam-
ple, a synchrotron ring needs to time its ejections precisely
with the receiving collector ring. The design therefore in-
cludes a fast mechanism for exchanges between generators.

WEPL011 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

50

Control solutions with FPGAs



PLANNING

The Timing Master (TM) is a mixed approach between a
powerful CPU for easy integration into operating software
as well as easy use of existing libraries and middleware.
However, CPUs have underlying core and power manage-
ment functions which make response times in the desired
range unpredictable. An FPGA is used for event generation
and time critical communication.

Figure 2: Timing Master Functional Blocks

ARCHITECTURE

Figure 2 shows the details of the current implemen-
tation in testing. It shows the data flow from Operating
through machine translation, conversion to programmatic
format and real time execution inside the FPGA submitting
data to the transfer layer.

DATA FLOW

The TM’s CPU gets instructions for a production line
(Isotope, Amount, Energy, Source, Path, Target) from Op-
erating. Physical requirements are translated into machine
requirements by the LSA middleware. The resulting event
sequences with their dependencies are transformed into
event generator programs, compiled and loaded into the
FPGA’s memory where they will be executed.

IMPLEMENTATION

CPU

The top interface to the control system is based on FESA,
a device model framework and driver package. An inter-
face to the LSA core provides machine behavior descrip-
tions calculated from physical parameters. Below this is
the event sequencer, compiler and FPGA communications
module. As soon as a production line is fully defined, rel-
ative execution time of all necessary events and dependen-
cies between the indiv To allow reload of new programs
during runtime without interruption, memory write access
is managed by CPU only to write in places not currently
locked for execution. Preinserted conditions in the EPUs
program allow branching off to new program code on de-
mand. Sequences for all interlock, beam abort or beam re-
quest scenarios can be predefined for all EPUs. The timing
masters real-time decision logic will then always switch to
safe, consistent alternative event sequences.

FPGA

The FPGA houses multiple processor macros, each with
its own memory and controller. These Event Processing
Units (EPUs) are all equal in implementation, their behav-
ior is fully determined by the programs loaded into their
RAM.

EPUs are made dedicated to certain parts of the facil-
ity or serve public functions, like collecting and process-
ing beam requests from experimental stations. This has
the benefit of having a human readable program for each
timing generator. and interaction between involved com-
ponents is easily traceable because it follows the supposed
beam path. This leads to well defined modules and in-
terfaces, which can easily be tested standalone, therefore
speeding up system development.

Their programs run in parallel, are able to listen to ex-
ternal signals and interlocks, generate timing events and
synchronise themselves with other processors by an n by n

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL011

Control hardware and low-level software Control solutions with FPGAs

51



flag matrix in a single cycle. In order to achieve fast syn-
chronisation, the flag matrix (each EPU can signal all other
EPUs) is completely realised as FlipFlops for fastest ac-
cess. An EPU can set its own flag vector and read the Bit
concerning itself from all other flag vectors, clearing it in
the process.

EPU and Instruction Set

The EPUs opcodes define mainly programmatic courses,
like jumps, branches and nested loops. They are not gen-
eral purpose processors but specialised sequencers. An
EPU instruction contains an Opcode, IO select instructions
and dedicated data fields for event codes, time values and
constants. This is not an optimal use of the FPGAs mem-
ory, but certifies execution times for each opcode and com-
pletely circumvents memory fragmentation.

WR Interface

For issues of load balancing, the Timing Master will
have a 100 µs collection cycle or granularity window for
outgoing events. The event concentrator macro then sends
a compact stream of events to the WR module, where they
are channel encoded and grouped into Ethernet packets.
Packet size also has an impact on the effectiveness of the
Forward Error Correction algorithm used in WR [4]. Cur-
rent settings expect a packet length of at least 200 byte for
the FEC to work efficiently, otherwise padding bytes must
be added.

Since the Timing Master broadcasts all events facility-
wide and only a few events are valid for an individual node,
predefined event filters will run in each nodes FPGA. When
an event is received, a node typically issues special trigger
signals or interrupts.

CONCLUSION

The concept of dedicated EPUs representing accelerator
components showed promise in early simulations.

A small number of EPUs were run with hand written
test programs, covering scenarios with up to four cooper-
ating EPUs. The task at hand is scaling these scenarios in
simulation to copy real scenarios. As soon as the simula-
tion is able to reproduce slowed down event sequences of
the current controls system, modules will be prepared for
synthesis.

OUTLOOK

A prototype system is planned to be set up in parallel
to the current pulse centre in 2011. By comparing control
sequences, a continuous test for aptability to the task of
running the current facility can be done. First test is run
with pre-written event programs, this allows testing in pro-
ductive conditions without further concern about schedul-
ing and machine calculations done above or transfer down
below.

After a first design stop of the EPU macros, the next goal
is an early implementation of the TMs software modules
most importantly the Event Sequencer and compiler. The
sequencer will be a solver tool able to synthesise the LSA
output sequence by reducing it to programmatic structures
and event numbers. The current compiler for the EPUs lan-
guage can be converted to a JIT-Compiler module for the
master.
A productive system is planned to be put into service at
GSI/FAIR in 2016.

REFERENCES

[1] P. Moreira et al., “White Rabbit: Sub-Nanosecond Timing
Distribution over Ethernet”, ISPCS 2009, Brescia, Italy, Oct
2009

[2] J. Serrano et al., P. “THE WHITE RABBIT PROJECT”,
TUC4 ICALEPS2009, Kobe, Japan, Oct 2009

[3] WR Switch Specifications http://www.ohwr.org/

[4] C. Prados Boda, T. Fleck, “ FEC in Deterministic Control
Systems over Gigabit Ethernet”, THPL011 PCaPAC2010,
Saskatoon, Canada, Oct 2010

WEPL011 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

52

Control solutions with FPGAs


