
USE OF THE CELL ACCELERATOR PLATFORM FOR SYNCHROTRON
DATA ANALYSIS

J. Qin, M. A. Bauer, N. S. McIntryre
The University of Western Ontario, WSC-143, UWO, London, ON. N6A 5B7, Canada.

Abstract
The analysis of synchrotron-based Polychromatic X-ray

Microdiffraction (PXM) data has been used by scientists
and engineers to understand elastic and plastic strains in
materials on a micro or nano scale. Such experiments
generate hundreds or thousands of images where the
analysis of each image often entails intensive
computations- a challenging task. As well, in the past, the
speed of such computations has made it difficult to obtain
feedback on the experimental results in near real time.
This has constrained researchers from making critical
decisions on direction subsequent experiments should
take based on the results in hand. In order to improve the
analysis performance of PXM images, we have
investigated the use of parallel analysis schemes. This
paper reports on the design and implementation of
accelerated PXM analysis software. It has been developed
on IBM PowerXCell 8i processors and Intel quad-core
Xeon processors. A substantial improvement in
processing speed has been obtained to the extent that it
should be possible to obtain results at the same rate as
they are produced on the VESPERS beamline at the
Canadian Light Source (CLS) Synchrotron (~1 Hz).

INTRODUCTION
The development of high-energy PXM as a non-

destructive method to determine elastic and plastic strains
has been ongoing for the past decade [1-5]. The data
generated in PXM experiments can consist of a large
number of 2D digital images. Once these images have
been generated from an experiment, ideally, it is expected
that data can be processed at a same speed level as data is
collected.

There are three major procedures involved in PXM data
analysis, including peak searching, indexing and strain
calculation. Briefly, peak searching attempts to extract
useful information about intensity points (peaks) from an
image to be used as input for the next two procedures.
The indexing procedure takes the output from the peak
searching procedure and generates the structural
information about the sample material, e.g. the orientation
of a crystalline lattice plane from which a diffraction spot
is generated. Based on the indexing results and peak
information, the strain analysis procedure then produces
strain tensors in the sample. Based on the indexing results
and strain tensor information, an orientation map and a
strain map can be generated for the entire scanned area
from which all PXM data were collected.

There are some existing software packages for PXM

data analysis, such as the 3D X-ray Micro-diffraction
Analysis Software Package at APS in Chicago which was
developed at ORNL[6], and X-ray Micro-diffraction
Analysis Software (XMAS) at ALS in Berkeley[7]. The
common feature of these two packages is that they both
are Windows-based software with a frontend interface
implemented in Interactive Data Language (IDL) [8] and
some backend procedures implemented in Fortran. Both
can process a large amount of PXM data sequentially, i.e.,
step by step and one by one in sequence. This is a very
time consuming process, and it usually takes days to
finish processing a set of data collected from one PXM
experiment. However, synchrotron time is valuable and it
is often difficult to get a scheduled beam time. Data
analysis using existing software means that researchers
must complete the analysis following their time on the
synchrotron. Faster analysis could help researchers make
decisions on subsequent experiments during their
synchrotron session and gain significant insight into the
materials that they are studying.

In this paper, we introduce the development of an
accelerated software for PXM data analysis, so called Fast
Online X-ray Micro-diffraction Analysis Software
(FOXMAS). It has been developed on a Cell accelerator
platform comprised of Intel and IBM Cell processors. The
software developed and the system it runs on makes it
possible for PXM data to be processed in “near-real
time”, that is, nearly as fast as it is being produced. A
description of the platform, the development approach,
some performance evaluations, conclusions and future
work are reported.

CELL ACCELERATOR PLATFORM
The target Cell accelerator platform, called Prickly, is

one of the clusters in SHARCNET [9]. It is a
heterogeneous High Performance Computing (HPC)
system consisting of one head node for hosting user
logins and a chassis with 12 Linux cluster blades
providing total 160 computing cores. Among the 12
blades, four blades are Intel blades and the other eight are
IBM Cell blades. On each of the Intel blades, there are
two quad-core Xeon E5420 processors running at 2.5GHz
with 8GB of memory. Each of the Cell blades contains
two PowerXCell 8i processors, so called Cell processors,
running at 3.2GHz with 16GB of memory. Blade
interconnection is achieved through Gigabit Ethernet.

Unlike traditional multi-core processors which are
homogenous, such as those on Intel blades, the Cell
processor itself has heterogonous multi-cores [10]. It
employs two types of cores optimized for different kind
of tasks. Each Cell processor has nine cores, i.e. one

*Work is part of Science Studio project supported by CANARIE
http://www.canarie.ca/

WECOMA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

4

Data analysis

PowerPC Processor Element (PPE) and eight Synergistic
Processor Elements (SPEs). The PPE is just a traditional
64-bit Power processor and acts as a large-scale processor
core to run the operating system and performs control-
intensive tasks. In contrast, the SPEs are much simpler,
but devote more resources to perform computationally
intensive tasks. Since each Cell blade has two Cell
processors, in total, there are sixteen SPEs on each Cell
blade. The sixteen SPEs are independent, 128-bit vector
processors. Each SPE has its own local storage (256KB)
for instructions and data. The SPE access to the memory
is achieved through its Direct Memory Access (DMA)
controller. The DMA can work concurrently with SPE
executions, which hides the latency caused by memory
accesses.

The Element Interconnect Bus (EIB) provides four 128-
bit data transmission channels for the inter-
communication among PPE, SPEs, main memory and
I/O. It can support up to 307GB/s bandwidth between
any two bus units. Therefore, with EIB, each SPE can not
only work alone, but also be chained together to perform
data processing with an intensive workload, such as
stream processing.

 While the Cell’s special architecture offers many
advantages for high performance computations, the
architecture also makes programming on Cell more
difficult.

DEVELOPMENT APPROACH
The goal of this development is to port the PXM data

analysis software onto the target Cell accelerator platform
to achieve an accelerated performance.

There are two major challenges involved in this porting
process. First, the exiting software was written in IDL
with some backend procedures written in Fortran. Our
target Cell platform Prickly can only support programs
mainly in C/C++. The software has to be rewritten into C
in order to make it run on Cell.

Another challenge is to program on the Cell. To make
use of all those advanced features provided by the Cell,
especially the computation power provided by those
SPEs, programming on Cell is a challenging. As each
SPE has its own local store for holding instructions and
input/output data, data needs to be moved back and forth
between the local store and the main memory with
explicit DMA commands. Because of the limited space
(256k) for a local store on SPEs, only tasks that fit can be
considered, otherwise, an advanced overlay management
needs to be used.

There were two objectives in developing the PXM data
analysis application. First, we wanted to create an
implementation of the three major analysis procedures
where the processing tasks were pipelined in order to
accelerate the processing of a PXM image. Second, we
wanted an implementation so that multiple PXM images
could also be processed in parallel.

To further improve the processing speed on a single
image, we want to identify the performance “bottleneck”
of the entire process and then target an implementation on
Cell around that “critical” part. Our measurements on a
sequential version of the analysis code indicated that
more than 80% of the processing time was spent in the
peak searching procedure; therefore, it was initially
targeted as the “critical” computation to be considered for
porting to the Cell.

The peak searching procedure involves finding a
threshold, blob searching, and curve fittings on each of
the blobs. Among all three subtasks in peak searching,
curve fitting is the most intensive one. During curve
fitting on a blob, it applies two 1-D fittings (i.e., one for
the X direction and one for the Y direction) and one 2-D
fitting for a box area around each blob. Fig. 1 illustrates
blobs identified in a PXM image with a certain intensity
threshold. Each fitting process actually entails solving a
multi-variable, non-linear least square minimization
problem. It involves iterations to update the state of
corresponding variables continually until certain criteria

Figure 1: An PXM image with identified blobs that need curve fittings

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOMA01

Experiment Data Acquisition/ Analysis Software Data analysis

5

are met. Specifically, the 1-D fitting involves solving
four variables; these results become the initial states for
the 2-D fitting. In turn, the 2-D fitting involves solving
for six variables. The existing software carries out the
curve fittings sequentially for each of the blobs in an
image; this is very time consuming and becomes the
bottleneck of the entire PXM data analysis.

 Considering the computational power of a Cell’s SPE,
with a limited local store, it works well for a process with
relatively small size but needs to run many times.
Fortunately, the curve fitting is applied to each blob,
which is in a relatively smaller area than the entire image
area. The computation of the fitting process is also
relatively intense and needs to be applied to every blob in
an image. Therefore, the curve fitting process was
selected as the processing task for the Cell’s SPEs. After
a collection of blobs has been identified, the fitting
process can be done on the Cell’s multiple SPEs in
parallel, i.e. multiple blobs can be fitted by multiple SPEs
simultaneously.

To analyze a large set of PXM images, we considered a
computational approach involving processing multiple
images in parallel and doing curve fitting on multiple

blobs in parallel for each image during peak searching.
The design of our parallel PXM data analysis program is
illustrated in Fig. 2.

Using Fig. 2 as a guide the processing proceeds as
follows. Initially, n images are loaded to be processed in
parallel. Each of these images is initially processed on
one of Cell’s PPEs in order to identify blobs – potential
regions having peaks. A list of blobs is produced for each
image. Curve fitting is then done on each list of blobs on
Cell’s SPEs in parallel. The processing of the blobs from
an image results in a list of possible peaks. The list of
peaks is then passed to the indexing computation which
results in index data and orientation maps based on index
data. The index data is also used in the strain computation
which produces a strain results and maps based on strain
data. The indexing computation and strain computations
are done on the Intel blades.

The design illustrated in Fig. 2 that has been
implemented and deployed on Prickly, FOXMAS, has a
web interface for job submission and online result
visualization, that are not discussed in this paper. Because
of the limited length, this paper only focused on the
development of the accelerated data analysis.

Figure 2: The configuration of high performance PXM data analysis on Prickly

Source Images

Images

Source Images

WECOMA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

6

Data analysis

PERFORMANCE EVALUATION
We measured the time needed for processing different

sets of images sequentially with the original IDL
software. We also measured the performance of
FOXMAS, i.e., the average processing speed with various
settings, including the number of parallel pipelines and
number of SPEs used on each image. The speedup of
each test case is compared to the speed of the IDL
software.

 PXM images could have different sizes depending on
the type and setting of a CCD detector. Larger size
images tend to provide more information with a trade-off
of a heavier analysis workload. In this evaluation, we
examined two different image sizes. One set of images
were collected from APS, each of which has 1042X1042
pixels and is about 2MB/image. Another set of images
were from CLS, each of which has 2084X2084 pixels and
is about 8MB/image. Using the original IDL software on
a desktop machine, the average processing speed for APS
images is about 4.31 sec./image and for CLS images is
about 14.36 sec./image.

 Prickly has total of 4 Intel blades and 8 Cell blades, we
examined the performance of data analysis on one pair of
Cell-Intel blades and on multiple pairs of Cell-Intel
blades. As described in Fig. 2, peak searching is done on
the Cell blade; while indexing and strain analysis are done
on the Intel blade. Since each Cell blade has a total of 16
SPEs, if n images are processed in parallel, i.e. n
pipelines, and m SPEs are allocated for each image or
each pipeline, m and n are constrained to be values such
that m×n=16. Different combinations of m and n were
tested. For the workload on the Intel blade, if n pipelines
are initiated for processing n images in parallel, n
processes are created on the Intel blade, and each of these
n processes works on the indexing and strain analysis on
one of n images. The operating system takes care of
workload distribution among the eight cores on the Intel
blade. The speedup of each test case is compared to the
desktop speed using IDL software. Tables 1 and 2
present the measured results on one pair of computation
nodes on Prickly.
Table 1: Results of processing APS images on one pair of
Cell-Intel nodes on Prickly

Images in
parallel

(pipelines)

Number of
SPEs for

each image

Average
Speed

(sec./image)

Speedup
vs. IDL
(times)

1 16 0.63 6.84
2 8 0.43 10.02
4 4 0.35 12.31
8 2 0.26 16.58

16 1 0.22 19.59

The results presented in Table 1 illustrate that for
processing images of the size of the APS images, the
more images that are processed in parallel, the better
throughput, i.e. processing 16 images resulted in average

speed 0.22 sec./ image and speedup of 19.59 times
compared to IDL software.
Table 2: Results of processing CLS images on one pair of
Cell-Intel nodes on Prickly

Images in
parallel

(pipelines)

Number of
SPEs for

each image

Average
speed

(sec./image)

Speedup
vs. IDL
(times)

1 16 2.84 5.06
2 8 1.81 7.93
4 4 1.55 9.26
8 2 1.67 8.60

16 1 1.68 8.55

In processing the larger size images, i.e. those from
CLS, the results of Table 2 suggest that processing 4
images in parallel and with 4 SPEs allocated for each
image can produce the best throughput, i.e. an average
speed 1.55 sec./image and about 9.26 times of speedup
compared to IDL software. The processing of multiple
images in parallel was achieved through multi-process
programming, while the parallel blob fitting on the Cell
was achieved through multi-threaded programming. In
general, process creation cost is much larger than thread
creation cost. The overall performance gain of a parallel
application is dependent on balancing the computational
workload and the trade-off in setting up the parallel
processing elements. The result of reducing the number of
SPEs allocated for each image, i.e., to 2 or 1 in Table 2, in
lieu of having more parallel pipelines to process more
images in parallel is not sufficient to overcome the blob
processing done on each of the larger images within the
SPEs. Consequently, using 4 pipelines and 4 SPEs results
in the best performance for images of this size.
Table 3: Results of processing APS images on multiple
pairs of Cell-Intel nodes on Prickly

Pair(s) of
Cell-Intel

nodes

Images in
parallel

(pipelines)

Average
speed

(sec./image)

Speedup
vs. IDL
(times)

1 16 0.22 19.59
2 32 0.14 30.78
3 48 0.07 61.57
4 64 0.07 61.57

To examine the performance of using multiple pairs of

Cell-Intel nodes on Prickly, based on the results presented
in Tables 1 and 2, 1 SPE per APS image and 4 SPEs per
CLS image were used. Tables 3 and 4 present the results.
The results illustrate that the performance of PXM data
analysis has been boosted significantly when more
computational resources are used. For the smaller sized
images collected at APS, as presented in Table 3, when
48 processing pipelines were setup on three pairs of Cell-
Intel blades, the average processing speed can reach as
high as 0.07 sec./image, which is 61.57 times speedup
compared with 4.31sec./image of using existing IDL
software on a desktop machine. For larger size images
collected at CLS, when 16 processing pipelines were
setup on four pairs of Cell-Intel blades, the average

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOMA01

Experiment Data Acquisition/ Analysis Software Data analysis

7

processing speed (see Table 4) can reach as high as 0.59
sec./image, which is 24.34 times speedup compared with
14.36 seconds/image when using the IDL software on a
desktop machine.
Table 4: Results of processing CLS images on multiple
pairs of Cell-Intel nodes on Prickly

Pair(s) of
Cell-Intel

nodes

Images in
parallel

(pipelines)

Average
speed

(sec./image)

Speedup
vs. IDL
(times)

1 4 1.55 9.26
2 8 0.96 14.96
3 12 0.70 20.51
4 16 0.59 24.34

Notably, the measured speedup from both sets of

experiments presented in Tables 3 and 4 do not result in a
linear improvement as more nodes are added. One of the
factors affecting the speedup is the increased overhead of
in setting up more pipelines exchanging information
across the two types of nodes on Prickly. Another factor
that affects achieving a linear speedup is the data transfer
and communication cost of the Gigabit Ethernet; as more
processes are added there is an increase in
communication.

The goal of this project is to make use of such an
accelerated data analysis for a synchrotron beamline to
achieve a real time experiment and data analysis. The Cell
platform Prickly is located at The University of Western
Ontario in London Ontario. A synchrotron beamline, such
as CLS is located in Saskatoon Saskatchewan. To achieve
a real time PXM experiment and data analysis, data
collected at CLS needs to be transferred to UWO in an
ultra high speed. CANARIE’s cross country lightpath
network can provide such an ultra high speed data
transmission. By using CANARIE’s dedicated lightpath
we are able to complete such a scenario.

A preliminary functional test has been measured for
such a scenario. It included a procedure of sending a set
of total 100 PXM images (about 8MB/image) from CLS
to UWO, then getting processed on SHARCNET’s
Prickly at UWO, and presenting final results at an FTP
site for users to download. It only took around 4 min. to
complete the entire procedure. In specific, it took about 2
min. for data transmission from CLS server to UWO
server through the lightpath, and less than 1 min. for data
transmission from UWO server to SHARCNET’s Prickly
through UWO’s intro-network. It only took about 1 min.
to finish the data analysis on Prickly and send the analysis
results back to UWO server for users to download. Even
thought there are still rooms for refinement, the
performance is quite promising for a real time
experiment.

CONCLUSION AND FUTURE WORK
In this paper we reported the development of an

accelerated PXM data analysis, FOXMAS, on a Cell
accelerator platform, i.e. the cluster Prickly on
SHARCNET. Using the computation power of Prickly,

especially the Cell processors, FOXMAS can achieve up
to 60 times faster than a desktop performance of using
original IDL software package, depending on the size of
images and the number of computation nodes used on
Prickly. Combined with CANARIE’s dedicated lightpath
for data transmission, the promising performance makes it
possible to process the data at the same high rate as it is
produced at the synchrotron (CLS).

Future work for our next step is to implement the
function of data transmission/analysis at the same time as
it has been collected during a synchrotron experiment, i.e.
a real time data collection and analysis. This is currently
underway using the VESPERS beamline at the CLS. Such
a model could also be adapted to other synchrotron and
HPC facilities.

ACKNOWLEDGEMENTS
FOXMAS was developed based on source code of IDL

packages from APS [6] and XMAS from ALS [7]. We are
grateful for the useful document from Dr. Nobumichi
Tamura of ALS in helping us to understand the analysis
procedures involved in PXM data analysis. Thanks to Dr.
M.L. Suominen Fuller and Ph.D. student Jing Chao at
UWO for their great help on the validation of results
produced by FOXMAS. Thanks to Dong Liu at CLS for
his collaborated work in the measurement of data
transportation from CLS to UWO through the dedicated
lightpath.

REFERENCES
[1] J.S. Chung and G. E. Ice, Journal of Applied Physics,

86 (1999) 5249-5255
[2] G. E. Ice and B. C. Larson, Advanced Engineering

Materials, 2(2000) 643-646
[3] B. C. Larson, W. Yang, G. E. Ice, J. D. Budai and J.

Z. Tischler, Nature, 415(2002) 887-890.
[4] M. L. Suominen Fuller, R. J. Klassen, N. S.

McIntyre, A. R. Gerson, S. Ramamurthy, P. J. King
and W. Liu, Journal of Nuclear Materials,374 (2008)
482-487

[5] J. Chao, A. Mark, M.L. Suominen Fuller, N. S.
McIntyre, R. A. Holt, R.J. Klassen and W. Liu,
Material Science and Engineering, A 524 (2009) 20-
27

[6] PXM data analysis at APS :
http://www.aps.anl.gov/Sectors/33_34/microdiff/dow
nloads/

[7] PXM data analysis at ALS:
http://xraysweb.lbl.gov/microdif/user_resources.htm

[8] K. P. Bowman, An Introduciton to Programming
with IDL: Interactive Data Language, Elsevier Inc.
2006

[9] SHARCNET website:
 https://www.sharcnet.ca/

[10] M. Scarpino, Programming the Cell Processor: For
Games, Graphics, and Computation, Printice Hall,
2008

WECOMA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

8

Data analysis

