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Abstract 
The analysis of synchrotron-based Polychromatic X-ray 

Microdiffraction (PXM) data has been used by scientists 
and engineers to understand elastic and plastic strains in 
materials on a micro or nano scale. Such experiments 
generate hundreds or thousands of images where the 
analysis of each image often entails intensive 
computations- a challenging task. As well, in the past, the 
speed of such computations has made it difficult to obtain 
feedback on the experimental results in near real time. 
This has constrained researchers from making critical 
decisions on direction subsequent experiments should 
take based on the results in hand. In order to improve the 
analysis performance of PXM images, we have 
investigated the use of parallel analysis schemes. This 
paper reports on the design and implementation of 
accelerated PXM analysis software. It has been developed 
on IBM PowerXCell 8i processors and Intel quad-core 
Xeon processors. A substantial improvement in 
processing speed has been obtained to the extent that it 
should be possible to obtain results at the same rate as 
they are produced on the VESPERS beamline at the 
Canadian Light Source (CLS) Synchrotron (~1 Hz). 

INTRODUCTION 
The development of high-energy PXM as a non-

destructive method to determine elastic and plastic strains 
has been ongoing for the past decade [1-5]. The data 
generated in PXM experiments can consist of a large 
number of 2D digital images. Once these images have 
been generated from an experiment, ideally, it is expected 
that data can be processed at a same speed level as data is 
collected.  

There are three major procedures involved in PXM data 
analysis, including peak searching, indexing and strain 
calculation. Briefly, peak searching attempts to extract 
useful information about intensity points (peaks) from an 
image to be used as input for the next two procedures.  
The indexing procedure takes the output from the peak 
searching procedure and generates the structural 
information about the sample material, e.g. the orientation 
of a crystalline lattice plane from which a diffraction spot 
is generated.  Based on the indexing results and peak 
information, the strain analysis procedure then produces 
strain tensors in the sample. Based on the indexing results 
and strain tensor information, an orientation map and a 
strain map can be generated for the entire scanned area 
from which all PXM data were collected. 

There are some existing software packages for PXM 

data analysis, such as the 3D X-ray Micro-diffraction 
Analysis Software Package at APS in Chicago which was 
developed at ORNL[6], and X-ray Micro-diffraction 
Analysis Software (XMAS) at ALS in Berkeley[7]. The 
common feature of these two packages is that they both 
are Windows-based software with a frontend interface 
implemented in Interactive Data Language (IDL) [8] and 
some backend procedures implemented in Fortran. Both 
can process a large amount of PXM data sequentially, i.e., 
step by step and one by one in sequence. This is a very 
time consuming process, and it usually takes days to 
finish processing a set of data collected from one PXM 
experiment. However, synchrotron time is valuable and it 
is often difficult to get a scheduled beam time. Data 
analysis using existing software means that researchers 
must complete the analysis following their time on the 
synchrotron.  Faster analysis could help researchers make 
decisions on subsequent experiments during their 
synchrotron session and gain significant insight into the 
materials that they are studying.    

In this paper, we introduce the development of an 
accelerated software for PXM data analysis, so called Fast 
Online X-ray Micro-diffraction Analysis Software 
(FOXMAS). It has been developed on a Cell accelerator 
platform comprised of Intel and IBM Cell processors. The 
software developed and the system it runs on makes it 
possible for PXM data to be processed in “near-real 
time”, that is, nearly as fast as it is being produced. A 
description of the platform, the development approach, 
some performance evaluations, conclusions and future 
work are reported. 

CELL ACCELERATOR PLATFORM  
The target Cell accelerator platform, called Prickly, is 

one of the clusters in SHARCNET [9]. It is a 
heterogeneous High Performance Computing (HPC) 
system consisting of one head node for hosting user 
logins and a chassis with 12 Linux cluster blades 
providing total 160 computing cores.  Among the 12 
blades, four blades are Intel blades and the other eight are 
IBM Cell blades.  On each of the Intel blades, there are 
two quad-core Xeon E5420 processors running at 2.5GHz 
with 8GB of memory.  Each of the Cell blades contains 
two PowerXCell 8i processors, so called Cell processors, 
running at 3.2GHz with 16GB of memory. Blade 
interconnection is achieved through Gigabit Ethernet.  

Unlike traditional multi-core processors which are 
homogenous, such as those on Intel blades, the Cell 
processor itself has heterogonous multi-cores [10].  It 
employs two types of cores optimized for different kind 
of tasks. Each Cell processor has nine cores, i.e. one 
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PowerPC Processor Element (PPE) and eight Synergistic 
Processor Elements (SPEs).  The PPE is just a traditional 
64-bit Power processor and acts as a large-scale processor 
core to run the operating system and performs control-
intensive tasks.  In contrast, the SPEs are much simpler, 
but devote more resources to perform computationally 
intensive tasks. Since each Cell blade has two Cell 
processors, in total, there are sixteen SPEs on each Cell 
blade. The sixteen SPEs are independent, 128-bit vector 
processors. Each SPE has its own local storage (256KB) 
for instructions and data.  The SPE access to the memory 
is achieved through its Direct Memory Access (DMA) 
controller. The DMA can work concurrently with SPE 
executions, which hides the latency caused by memory 
accesses.    

The Element Interconnect Bus (EIB) provides four 128-
bit data transmission channels for the inter-
communication among PPE, SPEs, main memory and 
I/O.  It can support up to 307GB/s bandwidth between 
any two bus units.  Therefore, with EIB, each SPE can not 
only work alone, but also be chained together to perform 
data processing with an intensive workload, such as 
stream processing. 

 While the Cell’s special architecture offers many 
advantages for high performance computations, the 
architecture also makes programming on Cell more 
difficult. 

DEVELOPMENT APPROACH 
The goal of this development is to port the PXM data 

analysis software onto the target Cell accelerator platform 
to achieve an accelerated performance. 

There are two major challenges involved in this porting 
process. First, the exiting software was written in IDL 
with some backend procedures written in Fortran. Our 
target Cell platform Prickly can only support programs 
mainly in C/C++. The software has to be rewritten into C 
in order to make it run on Cell.   

Another challenge is to program on the Cell. To make 
use of all those advanced features provided by the Cell, 
especially the computation power provided by those 
SPEs, programming on Cell is a challenging. As each 
SPE has its own local store for holding instructions and 
input/output data, data needs to be moved back and forth 
between the local store and the main memory with 
explicit DMA commands. Because of the limited space 
(256k) for a local store on SPEs, only tasks that fit can be 
considered, otherwise, an advanced overlay management 
needs to be used.   

There were two objectives in developing the PXM data 
analysis application.  First, we wanted to create an 
implementation of the three major analysis procedures 
where the processing tasks were pipelined in order to 
accelerate the processing of a PXM image.  Second, we 
wanted an implementation so that multiple PXM images 
could also be processed in parallel.   

To further improve the processing speed on a single 
image, we want to identify the performance “bottleneck” 
of the entire process and then target an implementation on 
Cell around that “critical” part. Our measurements on a 
sequential version of the analysis code indicated that 
more than 80% of the processing time was spent in the 
peak searching procedure; therefore, it was initially 
targeted as the “critical” computation to be considered for 
porting to the Cell. 

The peak searching procedure involves finding a 
threshold, blob searching, and curve fittings on each of 
the blobs. Among all three subtasks in peak searching, 
curve fitting is the most intensive one. During curve 
fitting on a blob, it applies two 1-D fittings (i.e., one for 
the X direction and one for the Y direction) and one 2-D 
fitting for a box area around each blob. Fig. 1 illustrates 
blobs identified in a PXM image with a certain intensity 
threshold. Each fitting process actually entails solving a 
multi-variable, non-linear least square minimization 
problem. It involves iterations to update the state of 
corresponding variables continually until certain criteria 

 

Figure 1: An PXM image with identified blobs that need curve fittings 
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are met.  Specifically, the 1-D fitting involves solving 
four variables; these results become the initial states for 
the 2-D fitting.  In turn, the 2-D fitting involves solving 
for six variables.  The existing software carries out the 
curve fittings sequentially for each of the blobs in an 
image; this is very time consuming and becomes the 
bottleneck of the entire PXM data analysis. 

 Considering the computational power of a Cell’s SPE, 
with a limited local store, it works well for a process with 
relatively small size but needs to run many times.  
Fortunately, the curve fitting is applied to each blob, 
which is in a relatively smaller area than the entire image 
area. The computation of the fitting process is also 
relatively intense and needs to be applied to every blob in 
an image. Therefore, the curve fitting process was 
selected as the processing task for the Cell’s SPEs.  After 
a collection of blobs has been identified, the fitting 
process can be done on the Cell’s multiple SPEs in 
parallel, i.e. multiple blobs can be fitted by multiple SPEs 
simultaneously.   

To analyze a large set of PXM images, we considered a 
computational approach involving processing multiple 
images in parallel and doing curve fitting on multiple 

blobs in parallel for each image during peak searching.    
The design of our parallel PXM data analysis program is 
illustrated in Fig. 2.  

Using Fig. 2 as a guide the processing proceeds as 
follows.  Initially, n images are loaded to be processed in 
parallel.  Each of these images is initially processed on 
one of Cell’s PPEs in order to identify blobs – potential 
regions having peaks.  A list of blobs is produced for each 
image.  Curve fitting is then done on each list of blobs on 
Cell’s SPEs in parallel. The processing of the blobs from 
an image results in a list of possible peaks. The list of 
peaks is then passed to the indexing computation which 
results in index data and orientation maps based on index 
data. The index data is also used in the strain computation 
which produces a strain results and maps based on strain 
data. The indexing computation and strain computations 
are done on the Intel blades.  

The design illustrated in Fig. 2 that has been 
implemented and deployed on Prickly, FOXMAS, has a 
web interface for job submission and online result 
visualization, that are not discussed in this paper. Because 
of the limited length, this paper only focused on the 
development of the accelerated data analysis.   

 

Figure 2: The configuration of high performance PXM data analysis on Prickly 
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PERFORMANCE EVALUATION 
We measured the time needed for processing different 

sets of images sequentially with the original IDL 
software. We also measured the performance of 
FOXMAS, i.e., the average processing speed with various 
settings, including the number of parallel pipelines and 
number of SPEs used on each image.  The speedup of 
each test case is compared to the speed of the IDL 
software.   

 PXM images could have different sizes depending on 
the type and setting of a CCD detector. Larger size 
images tend to provide more information with a trade-off 
of a heavier analysis workload. In this evaluation, we 
examined two different image sizes. One set of images 
were collected from APS, each of which has 1042X1042 
pixels and is about 2MB/image. Another set of images 
were from CLS, each of which has 2084X2084 pixels and 
is about 8MB/image. Using the original IDL software on 
a desktop machine, the average processing speed for APS 
images is about 4.31 sec./image and for CLS images is 
about 14.36 sec./image. 

 Prickly has total of 4 Intel blades and 8 Cell blades, we 
examined the performance of data analysis on one pair of 
Cell-Intel blades and on multiple pairs of Cell-Intel 
blades. As described in Fig. 2, peak searching is done on 
the Cell blade; while indexing and strain analysis are done 
on the Intel blade. Since each Cell blade has a total of 16 
SPEs, if n images are processed in parallel, i.e. n 
pipelines,  and  m SPEs are allocated for each image or 
each pipeline,  m and n are constrained to be values such 
that  m×n=16.  Different combinations of m and n were 
tested. For the workload on the Intel blade, if n pipelines 
are initiated for processing n images in parallel, n 
processes are created on the Intel blade, and each of these 
n processes works on the indexing and strain analysis on 
one of n images. The operating system takes care of 
workload distribution among the eight cores on the Intel 
blade. The speedup of each test case is compared to the 
desktop speed using IDL software.  Tables 1 and 2 
present the measured results on one pair of computation 
nodes on Prickly.    
Table 1: Results of processing APS images on one pair of 
Cell-Intel nodes on Prickly 

Images in 
parallel 

(pipelines) 

Number of 
SPEs for 

each image 

Average 
Speed 

(sec./image) 

Speedup 
vs. IDL 
(times) 

1 16 0.63 6.84 
2 8 0.43 10.02 
4 4 0.35 12.31 
8 2 0.26 16.58 

16 1 0.22 19.59 
 

The results presented in Table 1 illustrate that for 
processing images of the size of the APS images, the 
more images that are processed in parallel, the better 
throughput, i.e. processing 16 images resulted in average 

speed 0.22 sec./ image and speedup of 19.59 times 
compared to IDL software.   
Table 2: Results of processing CLS images on one pair of 
Cell-Intel nodes on Prickly 

Images in 
parallel 

(pipelines) 

Number of 
SPEs for 

each image 

Average 
speed 

(sec./image) 

Speedup 
vs. IDL 
(times) 

1 16 2.84 5.06 
2 8 1.81 7.93 
4 4 1.55 9.26 
8 2 1.67 8.60 

16 1 1.68 8.55 
 

In processing the larger size images, i.e. those from 
CLS, the results of Table 2 suggest that processing 4 
images in parallel and with 4 SPEs allocated for each 
image can produce the best throughput, i.e. an average 
speed 1.55 sec./image and about 9.26 times of speedup 
compared to IDL software. The processing of multiple 
images in parallel was achieved through multi-process 
programming, while the parallel blob fitting on the Cell 
was achieved through multi-threaded programming. In 
general, process creation cost is much larger than thread 
creation cost. The overall performance gain of a parallel 
application is dependent on balancing the computational 
workload and the trade-off in setting up the parallel 
processing elements. The result of reducing the number of 
SPEs allocated for each image, i.e., to 2 or 1 in Table 2, in 
lieu of having more parallel pipelines to process more 
images in parallel is not sufficient to overcome the blob 
processing done on each of the larger images within the 
SPEs. Consequently, using 4 pipelines and 4 SPEs results 
in the best performance for images of this size.   
Table 3: Results of processing APS images on multiple 
pairs of Cell-Intel nodes on Prickly 

Pair(s) of 
Cell-Intel 

nodes 

Images in 
parallel 

(pipelines) 

Average 
speed 

(sec./image) 

Speedup 
vs. IDL 
(times) 

1 16 0.22 19.59 
2 32 0.14 30.78 
3 48 0.07 61.57 
4 64 0.07 61.57 

 
To examine the performance of using multiple pairs of 

Cell-Intel nodes on Prickly, based on the results presented 
in Tables 1 and 2, 1 SPE per APS image and 4 SPEs per 
CLS image were used. Tables 3 and 4 present the results. 
The results illustrate that the performance of PXM data 
analysis has been boosted significantly when more 
computational resources are used.  For the smaller sized 
images collected at APS, as presented in Table 3, when 
48 processing pipelines were setup on three pairs of Cell-
Intel blades, the average processing speed can reach as 
high as 0.07 sec./image, which is 61.57 times speedup 
compared with 4.31sec./image of using existing IDL 
software on a desktop machine. For larger size images 
collected at CLS, when 16 processing pipelines were 
setup on four pairs of Cell-Intel blades, the average 
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processing speed (see Table 4) can reach as high as 0.59 
sec./image, which is 24.34 times speedup compared with 
14.36 seconds/image when using the IDL software on a 
desktop machine.  
Table 4: Results of processing CLS images on multiple 
pairs of Cell-Intel nodes on Prickly 

Pair(s) of 
Cell-Intel 

nodes 

Images in 
parallel 

(pipelines) 

Average 
speed 

(sec./image) 

Speedup 
vs. IDL 
(times) 

1 4 1.55 9.26 
2 8 0.96 14.96 
3 12 0.70 20.51 
4 16 0.59 24.34 

 
Notably, the measured speedup from both sets of 

experiments presented in Tables 3 and 4 do not result in a 
linear improvement as more nodes are added. One of the 
factors affecting the speedup is the increased overhead of 
in setting up more pipelines exchanging information 
across the two types of nodes on Prickly. Another factor 
that affects achieving a linear speedup is the data transfer 
and communication cost of the Gigabit Ethernet; as more 
processes are added there is an increase in 
communication.      

The goal of this project is to make use of such an 
accelerated data analysis for a synchrotron beamline to 
achieve a real time experiment and data analysis. The Cell 
platform Prickly is located at The University of Western 
Ontario in London Ontario. A synchrotron beamline, such 
as CLS is located in Saskatoon Saskatchewan. To achieve 
a real time PXM experiment and data analysis, data 
collected at CLS needs to be transferred to UWO in an 
ultra high speed. CANARIE’s cross country lightpath 
network can provide such an ultra high speed data 
transmission. By using CANARIE’s dedicated lightpath 
we are able to complete such a scenario. 

A preliminary functional test has been measured for 
such a scenario. It included a procedure of sending a set 
of total 100 PXM images (about 8MB/image) from CLS 
to UWO, then getting processed on SHARCNET’s 
Prickly at UWO, and presenting final results at an FTP 
site for users to download. It only took around 4 min. to 
complete the entire procedure. In specific, it took about 2 
min. for data transmission from CLS server to UWO 
server through the lightpath, and less than 1 min. for data 
transmission from UWO server to SHARCNET’s Prickly 
through UWO’s intro-network. It only took about 1 min. 
to finish the data analysis on Prickly and send the analysis 
results back to UWO server for users to download. Even 
thought there are still rooms for refinement, the 
performance is quite promising for a real time 
experiment.   

CONCLUSION AND FUTURE WORK  
In this paper we reported the development of an 

accelerated PXM data analysis, FOXMAS, on a Cell 
accelerator platform, i.e. the cluster Prickly on 
SHARCNET. Using the computation power of Prickly, 

especially the Cell processors, FOXMAS can achieve up 
to 60 times faster than a desktop performance of using 
original IDL software package, depending on the size of 
images and the number of computation nodes used on 
Prickly. Combined with CANARIE’s dedicated lightpath 
for data transmission, the promising performance makes it 
possible to process the data at the same high rate as it is 
produced at the synchrotron (CLS).   

Future work for our next step is to implement the 
function of data transmission/analysis at the same time as 
it has been collected during a synchrotron experiment, i.e. 
a real time data collection and analysis. This is currently 
underway using the VESPERS beamline at the CLS. Such 
a model could also be adapted to other synchrotron and 
HPC facilities.  
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