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Abstract

The 50 GeV proton synchrotron, proposed by the Institute
of Nuclear Study of Japan (INS), requires zero-dispersion
straight sections for polarized-beam operation. A new pre-
liminary lattice that contains two straight sections with
nonzero dispersion and two with zero dispersion is pre-
sented. Theγt of the whole ring remains imaginary. Some
analysis of the lattice is discussed.

1 INTRODUCTION

In order to reduce beam loss, the 50-GeV proton syn-
chrotron of the Japan Hadron Project (JHP), designed by
the INS, will operate with an imaginary-γt [1]. The lat-
tice is 4-fold symmetric. Each quadrant consists of 6 flexi-
ble momentum-compaction (FMC) modules [2] and a long
straight section of about 60 m in length. Each FMC mod-
ule is 3 FODO-cell long. The dispersion in the long straight
sections vary between−0.71 and 0.58 m. Although the dis-
persion is small, it is always more appealing to have zero-
dispersion straights. This is especially true when the syn-
chrotron is accelerating a polarized beam. To obtain zero
dispersion in one straight section and in another straight
section on the other side of the ring, a special excitation
of the quadrupoles needs to be turned on so as to allow a
dispersion wave and a betatron wave to flow through half
of the ring. Aside from the inconvenience of having a
special power supply, this excitation also brings about un-
wanted high betatron functions and high dispersion func-
tions, which will eventually limit the performance of the
accelerator at high intensities. In this paper, we suggest the
introduction of dispersion suppressors. A preliminary lat-
tice that contains two straight sections with nonzero disper-
sion and two with zero dispersion is presented. The details
are given in Ref. 3.

2 DISPERSION SUPPRESSOR

The standard FMC module of the JHP ring is shown in
Fig. 1 with its lattice elements, betatron functions and dis-
persion. To study its dispersion property, the module is
plotted in the normalized dispersion space in Fig. 2(a), with√
βxD

′ + αxD/
√
βx versusD/

√
βx [2]. Here,D and

D′ are, respectively, the dispersion function and its deriva-
tive with respect to the longitudinal coordinates, βx and
β′
x = −2αx are, respectively, the horizontal betatron am-

plitude function and its derivative.
A thin dipole of bending angleθ will be represented by a

horizontal advance of
√
βxθ. Outside the dipoles, the plot
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Figure 1: The standard FMC module of the JHP ring.

becomes an arc of a circle centered at the origin with phase
advance equal to the horizontal Floque phase advance. We
see that the module starts off from the quadrupole QDX
with zeroβ′

x andD′, but with dispersion−0.5213 m. The
first two dipoles BB are represented by two long straight
lines pointing mostly to the right. Note that these line are
not exactly horizontal, because the dipole is far from a thin
element and there is a phase advance across it. If we chop
up the dipoles into smaller elements, this straight line will
be curved. However, it will still be quite different from the
arc of a circle with center at the origin of the plot. The
deviation just represents the angle-bending nature of the
dipole. After the dipoles, follows an arc of a circle centered
at the origin leading to the center quadrupoles QFX, which
have the largestD/

√
βx. The other half of the module is

just the mirror image of the first half, coming back to the
starting point.

In order to be a dispersion suppressor, we must alter
the lattice so that the end of the module stops precisely
at the origin of the dispersion space. To accomplish this,
we must first make the radius of the arc smaller in the up-
per half of the dispersion plane, and second we must use
an exact amount of dipole to bring the module toD = 0
andD′ = 0 at the point when this arc reaches roughly
180◦. The suppressor constructed in this way is shown in
Fig. 3 and its dispersion plot in Fig. 2(b). The construc-
tion starts from pulling out the second dipole, so that the
module continues with a smaller arc until the quadrupole
QFFX. To facilitate lattice matching, although unnecessary,
we treat this temporarily as a point of symmetry, that is
with β′

x = β′
y = D′ = 0. After that we continue as in

the case of the standard FMC module with the exception
that the last dipole, called B4, is shortened so that the mod-
ule lands exactly atD = 0, D′ = 0. In order not to deal
with a fractional dipole, the amount B4 has been shortened,
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Figure 2: The standard FMC module and dispersion
suppressor in the normalized dispersion plane.

called B4E, is placed in the space where the second dipole
has been pulled out. In other words, one normal dipole
has been pulled out, and another normal dipole has been
chopped up into two parts B4 and B4E, 83% and 17% of
the normal dipole. The chopping up of a normal dipole
for the dispersion suppressor seems to be inevitable. This
is very similar to the situation of the dispersion suppressor
in a FODO-cell lattice, where one can avoid chopping up
dipole only when the phase advance of each cell is exactly
π/3.

As shown in Fig. 3, the dispersion suppressor is not very
much different from the standard FMC module. It has a
length of 48.7269 m, maximum/minimum dispersion of
1.8632/− 0.5148 m, maximum/minimum horizontal beta-
tron function 31.84/4.22 m and maximum/minimum verti-
cal betatron function 32.32/7.17 m. The vertical and hori-
zontal tune advances are 0.721/0.545, which are very close
to the 0.740/0.531 for the standard FMC module. Best of
all, this suppressor has also an imaginary transition gamma
of γt = 69.05i, so that the whole ring can still retain its
imaginary-γt property.

3 LONG STRAIGHT SECTIONS

There will be two long straight sections that are dispersion-
free and two that are not. The straight with dispersion,
which joins two standard FMC modules together, consists
of 4 FODO cells with a total length of 61.2524 m. The
zero-dispersion straight is inserted between two dispersion-
suppressors. It also contains 4 FODO cells with a total
length of 62.2938 m.

Now the whole ring can be assembled. We start from

Figure 3: The lattice structure of the dispersion suppressor.

the center of the non-dispersion-free straight section, then 5
standard FMC modules, the dispersion suppressor, and then
the dispersion-free long straight section. We make a mirror
reflection about the center of the dispersion-free straight to
arrive back at the center of the other non-dispersion-free
straight. This complete one half of the ring. The whole
ring has now only 92 dipoles each of length 6.2 m. Since
the beam particles are to be accelerated to the maximum
total energy of 50 GeV, the maximum bending field of the
dipole becomes 1.837 T, which is high but is still possible.
There is enough space to increase the length of the dipoles
from 6.2 m to 6.3 m, thus reducing the bending field to
1.808 T.

4 SEXTUPOLE CORRECTION

In general, quadrupoles of the FMC modules are stronger
than those in the usual FODO lattice. As a result, larger
natural chromaticities will be generated and sextupoles of
larger strengths will be required for their corrections. The
corrections are mainly made by the two families of sex-
tupoles SF and SD as shown in Figs. 1 and 3. There each
SF or SD is represented by 5 thin sextupoles in the lattice
code. Just after the entrance defocusing quadrupole of each
FMC module, there is a third family SX, which is used for
fine adjustment. For example, the chromaticity corrections
have been made by setting the strength of each SX to be
0.105 m−2 and each of the thin SF and SD 0.0572 m−2

and−0.0933 m−2, respectively. The amplitude-dependent
betatron tunes areνx = 21.0954 + 130εx − 116εy and
νy = 15.4433 − 116εx + 134εy, where the emittancesεx
andεy are measured inπm. We see that withεx = εy =
50×10−6 πm, the largest tune spread is only 0.0067, which
is quite acceptable for a non-storage ring.

Another measure of nonlinearity introduced by the cor-
rection sextupoles is the single-particle smears, which are
defined as the fractional rms distortion of the Poincar´e torus
at any phase advances in the horizontal and vertical phase
spaces. The smears can be expressed analytically in terms
of the distortion functions [4]. We see from Fig. 4 that the
rms vertical smear reaches only about 0.1%, which is very
small, and the horizontal smear is still smaller. The full
smears will be roughly

√
2 times the rms values, which are
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Figure 4: The horizontal and vertical single-particle smears
for one quarter of the accelerator ring.

much less than the 7% nonlinear criterion of the former Su-
perconducting Super Collider. We also see that the smears
are step-like, constant over a region and exhibit a jump only
when a sextupole is encountered.

5 BETATRON BEATINGS

In this FMC-type lattice, it is impossible to place a sex-
tupole beside every quadrupole to correct for local chro-
maticities. As a result, particles with a momentum offset
will see a different set of betatron functions. The fractional
change in the betatron function per unit momentum devi-
ation∆β/β|ψ, horizontal or vertical, at phase advanceψ,
is called “beat factor” [5]. Each beat factor can be made
complex by introducing the imaginary part− d

dψ
∆β
2β |ψ. As

a vector, the complex number just rotates at a tune of2ν,
except when crossing a field gradientk of infinitesimal
length` where the real part jumps by12βk`. Note that the
field gradient can come from quadrupoles, sextupoles, the
centripetal force of the dipoles as well as the edges of the
dipoles. The magnitudes of the beat vectors are plotted in
Fig. 5, the largest being around 30. Considering that the
momentum spread of the beam is only0.5% at injection,
the relative change in betatron function is at the most 15%
which is not excessive at all.

The harmonic analysis of the beat factors is also im-
portant, because it gives us some clues to reduce the beat
factors. Choosing the mid-point of a non-dispersion-free
straight as the point having zero phase advances, the lattice
is almost left-right symmetric (aside from the sextupoles
SX). The Courant-SynderJp’s then become almost real:

Jp =
∫ πν

−πν
k(ψ′)β2(ψ′) cos

pψ′

ν
dψ′ .

Each beat factor can be expanded as

∆β
β

∣∣∣∣
ψ

= − J0

πν
− 2ν

π

∑
p>0

Jp cos pψ
′

ν

4ν2 − p2
.

We find that the sextupoles do produce beat waves in
the harmonic space. This is because they have not been
placed at the proper phase advances for confinement or can-
cellation. The tunes of the lattice areνx = 21.0954 and

Figure 5: The magnitudes of the horizontal and vertical
beating vectors for one quarter of the accelerator ring.

νy = 15.4433, so that the important Fourier components
arep = 42 for the horizontal andp = 31 for the vertical.
Because of the two-fold symmetry of the lattice,p = 31
does not occur. As forp=42, the horizontal beat factor is
not large because2νx is still far from 42. However, we do
see the beat waves exhibit large magnitudes atp=28. This
comes about because each of the two straight sections has
a vertical tune advance of∼0.60 which is not too far from
the vertical phase advance of 0.53 for each FMC module.
On the other hand, their horizontal tune advances are 1.00
and 0.70, respectively, for the straights with dispersion and
the one without. They average out to roughly the horizon-
tal tune advance of a FMC module. Thus, the contributions
of the sextupoles add up. As a result, there appears to be
roughly a 7-fold symmetry in a superperiod. Hopefully,
p = 28 is quite far away from a multiple of the tunes and
the contribution of this harmonic has not been too large. To
reduce this contribution, the vertical phase advance of the
straight section must be increased.

6 SUM RESONANCES

Sum and difference resonances should also be studied. We
note that2νy + νx = 51.982 is too close to the third inte-
ger sum resonance. This happens because this preliminary
lattice is just a simple modification of the original INS lat-
tice [1], which also sits at this third integer sum resonance.
However, we believe that this resonance can be avoided by
a more careful design of the lattice.
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