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Abstract

In the usual treatment of impedances of beamline
structures the electromagnetic response is computed under
the assumption that the source charge trajectory is parallel
to the propagation axis and is unaffected by the wake of
the structure.  For high energy beams of relatively low
current this is generally a valid assumption.  Under certain
conditions the assumption of a parallel source charge
trajectory is no longer valid and the effects of the
changing trajectory must be included in the analysis.
Here the usual transmission line analysis [1] that has been
applied to BPM type transverse kickers is extended to
include the self-consistent motion of the beam in the
structure.

1  INTRODUCTION

The desire to use one induction accelerator to provide
multiple lines of sight for advanced radiography [2] has
stimulated work in the use of cylindrical stripline kickers
to deflect kiloampere electron beams.  We consider a
cylindrical stripline kicker as shown in Fig. 1 consisting
of four electrodes.  Two of the electrodes are grounded
while the remaining two are driven from the downstream
end by opposite polarity cable signals.  For simplicity, we
will assume that the kicker impedance is matched to that
of the drive cables but that the upstream termination
cables have an arbitrary impedance Zt.

electrode

cable

e-beam
return current

Fig. 1  Schematic of return currents in the stripline kicker

 2  TRANSMISSION LINE EQUATIONS

The transmission line model of the kicker structure is
shown in Fig. 2. The quantity Ir represents the beam
return current which is introduced into the transmission
lines formed by the electrodes and the outer vacuum
housing at the gaps at either end of the striplines.  These
are the usual sources used in the analysis of reference [1].
Also shown is the voltage source representing the pulser.

The schematic is shown only for one of the driven plates
and Ir is interpreted as the dipole return current flowing on
that strip (since the monopole return current will not
generate a net deflecting force).  To these sources we must
add distributed shunt current sources to account for the fact
that the beam is changing its transverse position within
the structure.  If we follow a given "slice" of the beam as
it enters the kicker imagine that it enters on axis so that
there is no dipole return current at z=0.  We now allow
the beam slice to deflect due to the action of, say, an
external bias coil.  That slice will then generate a dipole
return current on the strip.  Since the current on the strip
must be conserved, an equal and opposite current must be
induced on the other side of the strip, i.e., in the
transmission line.  This can be represented by the
distributed shunt current source g(z,τ) given by

g z, τ( ) = − ∂
∂z

Ir z, τ( ) − Ir 0, τ( )[ ] .          (1)

Here the variable τ  is the slice label given by
τ ≡ t − L / c − z / c .  We will assume that the axial
velocity is c, vacuum light speed and L is the length of
the kicker.  We will solve the transmission line equations
in the variables z and t so that we will need to convert g
to the proper form.  The transmission line equations
become

∂V

∂t
= −L

∂i

∂t
                       (2)

and

∂i

∂t
= −C

∂V

∂t
+ g z, t( )               (3)
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Fig. 2  Transmission line circuit showing distributed
sources

where C is the capacitance per unit length of the line and
L in the inductance per unit length of the line.  We take

Zk = L / C  and c = 1 / LC vacuum light speed which

18610-7803-4376-X/98/$10.00  1998 IEEE



is also the propagation speed on the line.  We have two
boundary conditions for the problem.  At z=0 we have that

V 0, t( ) = −Zt i 0, t( ) − Ir 0, t( )( )             (4)

and
V L, t( ) = 2V p + Zk i L, t( ) + Ir L, t( )( ). (5)

We will also need to compute the total Lorentz force on
an electron passing through the structure.  It can be

shown that   
v
E +

r
v ×

r
B  is proportional to the quantity V*

defined as
V* = V − Zki .                         (6)

We solve these equations by Laplace transforming in t to
s.  By using the method of variation of parameters we find
that

Ṽ * z, s( ) = 2Ṽ p s( ) + Ĩr L, s( )Zke
− 2sL

c











e

− s

c
L− z( )

+Zk dz' g̃ z' , s( )
z

L

∫ e
− s

c
L+ z'( )+ s

c
z− z'( )

  (7)

Note that the force does not depend on the upstream
termination impedance.  This is due to the fact that waves
moving in the positive z direction have the magnetic force
canceling the electric force.  Only waves moving upstream
will exert a force on the beam.  Since the downstream
termination is matched to the line any waves reflecting off
the upstream termination exert no force and leave the
problem when they arrive at the downstream termination.

3  BEAM DYNAMICS

In order to compute the behavior of a slice of the beam we
need V*(z,τ).  We can invert equation (7) and use the
definition of τ to obtain

V * z, τ( ) = 2V p τ + 2z

c




 + Ir L, τ − 2L

c
+ 2z

c




 Zk

+Zk dz' g z' , τ + 2z

c
− 2z'

c




z

L

∫
.   (8)

Let us examine the consequences of equation (8) for the
usual case.  We set Vp=0 and take a parallel beam
trajectory for the source charge so that g vanishes and

Ir = Qηx0

b
δ τ( )   (9)

where xo is the particle offset, Q is it's charge, b is the
kicker electrode radius and η  is a geometric factor. We
thus find that V* is given by

V * z, τ( ) = Qηx0Zk

b
δ τ − 2L

c
+ 2z

c




 .   (10)

We can integrate the transverse force over the length of

the kicker to obtain the wake function as

W τ( ) = αQηx0c

2b
θ τ( ) − θ τ − 2L

c












     (11)

where α is another geometric factor.  We can now find the
transverse impedance by taking the Fourier transform of
the wake function.

Z⊥ ω( ) = i

Qx0

W τ( )e− iωτ
−∞

∞
∫ dτ           (12)

to obtain

Z⊥ ω( ) = αηZk L

2b

1 − e
− 2iωL

c

ωL

c

















        ( 1 3 )

the normalized real and imaginary parts of which are
plotted in Fig. 3 and 4 respectively as a function of
x ≡ ωL / c .  These forms match those found previously
[1].

Fig. 3 Plot of normalized real part of the impedance vs.
ωL / c

Fig. 4  Normalized plot of the imaginary part of the
impedance vs. ωL / c
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4  ASYMPTOTIC DEFLECTION

We may use the expression for V* to find the self-
consistent displacement of the beam inside the kicker due
to the action of the wakefields.  Let us consider the case
of a continuous beam with no applied voltage.  The
dipole return current is given by

Ir = − 2 Ib τ( )x z, τ( )
πb

sin
φ0

2




  (14)

where Ib is the beam current (Ib is <0 for electrons) and
where φo is the angle subtended by the driven stripline.
Let us consider the case of a long electron beam and put
Ib=-IB where IB is a positive constant.  Inserting the
appropriate geometric factors we may write the differential
equation of motion for a slice of the beam as

∂ 2 x z, τ( )
∂z2 = 2 IB

Ic L2 x L, τ − 2L

c
+ 2z

c









− ∂
∂z'z

L

∫ x z' , τ + 2z

c
− 2z'

c




 dz'




       (15)

Let us now Laplace transform this equation in τ to s.

∂ 2 x̃

∂z2 = 2 IB

Ic L2 x̃ L, s( )e
− 2sL

c
+ 2sz

c






− ∂
∂z'z

L

∫ x̃ z' , s( )e
2sz

c
− 2sz'

c











dz'







          (16)

The quantity Ic is the "critical current" and is given by

Ic ≡ π
16

Z0

Zk

b2

L2

γβ 2 I0

sin2 φ0

2






                (17)

where Zo is the impedance of free space (377 ohms) and
Io is approximately 17kA.

Upon integrating (16) by parts we obtain

∂ 2 x̃ z, s( )
∂z2 = 2 IB

Ic L2 [ x̃ z, s( ) − 2
c

sx̃ z' , s( )e
2sz

c
− 2sz'

c
z

L

∫ dz' ] (18)

which can be solved in the asymptotic limit for large τ.
This limit corresponds to the limit s->0.  Therefore, in
the limit τ->∞ we have

∂ 2 x z, τ( )
∂z2 = 2 IB

Ic L2 x z, τ( )                (19)

which can be solved to yield

x(z, τ ) = x(0, τ ) cosh
2 IB

Ic

z

L








+ x' (0, τ )L

2 IB

Ic

sinh
2 IB

Ic

z

L







          (20)

Thus the input position and angle are both amplified by

the factor cosh 2 IB / Ic( )  at the exit of the kicker.

5  CONCLUSIONS

We have studied the deflection due to beam induced
voltages in a stripline transverse kicker.  The asymptotic
displacement of the beam position at the kicker output is
predicted as a function of the beam current, kicker
impedance and dimensions of the structure.  In the limit
of infinitely stiff beams the usual result is recovered for
the transverse impedance.
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