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Abstract

The interplay between dispersion and space charge in cir-
cular accelerators or storage rings is investigated by look-
ing for self-consistent solutions of the Vlasov-Poisson
equation that generalize the KV-distribution to the case
where dispersion is present. The results show a growth
of the rms quantities describing the beam distribution with
the momentum deviation and tune depression. The growth,
however, is modest for realistic values of these parameters.

1 INTRODUCTION

The combined effect of space charge and dispersion is one
of the issues to be investigated in the Electron Ring at the
University of Maryland [1]. The goal is to produce, main-
tain and study a beam with a depressed-tune factor in the
range0.2÷ 0.4. In this range of highly space charge domi-
nated beams the answer to the question of whether the usual
single-particle treatment of dispersion is still justified is not
obvious and very little can be found in accelerator physics
literature on this topic [2]. In order to get an insight into
the scale of the problem, we studied a simplified model
of the Electron Ring dynamics. In the model we assume
the smooth approximation in which the external focusing
functions and the radius of curvature are constant. More-
over, all the nonlinearities due to the external focusing are
neglected. The study has been carried out by looking for
self-consistent solutions of the Vlasov-Poisson equations.

2 DISPERSION

Dispersion is usually characterized in terms of the disper-
sion functionD(z), solution of the equation (see e.g. [3]):

D(z)′′ + k(z)D(z) =
1
ρ(z)

.

whereρ(z) is the local radius of curvature andδ = ∆p
p0

de-
scribes the relative deviation from the designed momentum
p0.

In a multi-particle perspective we are interested in de-
scribing how the beam distribution is affected by the pres-
ence of dispersion. Consider a beam of non-interacting
particles with a gaussian distribution in both the transverse
variables and the longitudinal momentum. In other words,
let the beam be described by the following distribution
function:

f(x, px, y, py, δ) =
fo

δo
√
π
e
− δ2

δ2o exp(− I

T
),

whereI is an invariant for the system andT a constant. An
obvious choice forI is

I =
1
2
(px − δD(z)′)2 +

1
2
k(x− δD(z))2 +

1
2
p2

y +
1
2
ky2,

where, for semplicity, we have supposed that the focusing
functionk is constant. The second moment of the distribu-
tion can be easily seen to be:

< x2 >δo=
< x2 >o

1 − δ2
oD(z)2

2<x2>o

'< x2 >o +D(z)2 < δ2 > .

(1)
Here we wrote< x2 >o to indicate the second moment

of the distribution whenδo → 0 and the last equality holds
for smallδo. We see that if we neglect the mutual interac-
tion among the particles, the dispersion function turns out
to be a measure of the second moment of the distribution.

One of the questions we want to address in this paper is
how the relation (1) changes when we allow space charge
effects to enter the picture. A consequence of the presence
of space charge is to modify the strength of the effective
focusing forces acting on the particles and therefore tode-
pressthe tuneνo. In the smooth approximation and absence
of space chargeD = ρo/ν

2
o . We can question whether in

presence of space charge the expression for the second mo-
ment of the distribution can be recovered from (1) by the
changeν ↔ νo in the expression for the dispersion (νo is
the undepressed tune,ν is the depressed tune as calculated
for an equivalent KV-beam in absence of dispersion). As
we will see, the estimate we get in this way, while working
for a moderate space charge, fails for higher tune depres-
sion giving a very high upper limit.

Finally, notice that (1) provides the natural generaliza-
tion for the definition of dispersion in the presence of space
charge.

3 THE VLASOV-POISSON EQUATIONS

Our model is described by a Hamiltonian [3]H = H⊥ +
H‖, whereH‖ = m2c4

E2
o
δ2 is a purely longitudinal term and

H⊥ =
1
2
(p2

x + p2
y) +

k

2
(x2 + y2) − x

ρo
δ + goψ,

(with go = q/mv2
zγ

3).
The Hamiltonian refers to a beam of particles of charge

q and massm in a smooth circular channel. The self-force
is described by the potentialψ. The designed momen-
tum, longitudinal velocity, and the corresponding relativis-
tic factor arepo, vz , andγ.
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Since the Hamiltonian is time independent the momen-
tum deviationδ is a constant of the motion. ClearlyH⊥ is
also an integral of the motion.

We want to search for self-consistent solutions of the
Vlasov-Poisson equation associated withH:

∂f

∂z
+ {f,H} = 0, ∇2ψ = − q

ε0
n(x, y),

where

n(x, y) =
∫ ∫ ∫

dδdpxdpyf(x, px, y, py, δ). (2)

In particular, we want to look for a stationary solution
∂f
∂z = 0. We recall that any function of integrals of mo-
tion of an Hamiltonian system is a stationary solution of
the corresponding Vlasov equation. Therefore, a particular
stationary solution of the Vlasov equation associated with
the HamiltonianH is given by:

f(x, px, y, py, δ) = f‖(δ)f⊥(H⊥).

4 GENERALIZED KV BEAM
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Figure 1: Section ofn(x, y) aty = 0 for different values of
δo, ranging from.001 to .01, (I = .105 A, ν/νo =0.317).

We look for solutions of the Poisson-Vlasov equation de-
scribing a beam with a gaussian distribution of the longitu-
dinal momentum and a KV-beam like distribution in the
transverse plane:

f‖(δ) = 1
δo

√
π
e
− δ2

δ2o ,

f⊥(H⊥) = f0δ̂(H⊥ −H0).

In the limit δo → 0, we recover the usual KV distribu-
tion. The corresponding space density (see eq. 2) can be
expressed in terms of the Gauss error function:

n(x, y) = πfo[erf
(
λ(x, y)ρo

δo|x|
)

+ 1]. (3)

with

λ(x, y) = Ho − kx

2
x2 − ky

2
y2 − goψ(x, y).

Therefore the Poisson equation then reads:

∇2ψ = − q

εo
πfo[erf

(
λ(x, y)ρo

δo|x|
)

+ 1]. (4)

The two parametersfo andHo are related respectively to
the density of the beam and its size. They depend on each
other through the normalization equation

NL =
∫ ∫

n(x, y)dxdy
= πfo

∫ ∫
[erf

(
λ(x,y)ρo

δo|x|
)

+ 1]dxdy, (5)

whereNL is the linear density of the beam, which is related
to the currentI by the relationNL = I/(qvz). When we
solve equation (4) for different values of the parameterδo
we will be interested in comparing solutions corresponding
to beams that carry the same current (i.e. sameNL). Af-
ter settingfo to a fixed value, we shall use equation (5) to
determineHo.

4.1 Emittance Calculation

The beam distribution can be charcaterized in terms of the
emittance and related rms quantities. The rms emittance in
the horizontal plane is:

εx = (< x2 >< p2
x > − < xpx >

2)1/2.

For a KV round beam of radiusa in absence of dispersion
εxo = a

√
Ho/8. When dispersion is present it is possible

to reduce the expression for the rms quantities to the cal-
culation of double integrals overx andy. Although these
integrals cannot be carried out analytically, it is possible to
find out the scaling with respect toδo using simple argu-
ments. It turns out that

(εx − εxo) ∝ δ2o . (6)

-0.02

0

0.02

x (m)

-0.02

0

0.02

y (m)

n(x,y)

02

0

0 02

x (m)

Figure 2: Density distributionn(x, y) for I = .105 A,
ν/νo =0.317,δo = .01.
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4.2 The Numerical Solution

Beam EnergyEo 10 keV
Tuneνo 7.6
Focusing func.k 17.437 m−2

Radius of curv.ρo 1.82 m

In solving numerically equation (4) we have used the
Succesive Overrelaxation Method (SOR) [4].

We show two sets of solutions. The first set of solutions
describes beams carrying the same current (I=.105 A, cor-
responding to a tune depression factorν/νo = .317. 1) for
various values of the rms momentum spread. In particular,
δo ranges between10−2 and10−3. The results, in terms of
the horizontal profile (y = 0) of the beam densityn(x, y),
see (3), are shown in Fig. 1.

Fig. 2 shows the full density function in the(x, y) plane
for δo = .01. The scaling of the emittance with respect to
δo (6) has also been checked and is shown in Fig. 3. The
curve in the picture is a parabola obtained by numerical
fitting of the first four points.
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Figure 3: Scaled horizontal emittance (εx/εxo) as a func-
tion of δo, (I= .105 A, ν/νo =0.317).

In the second set of solutions the parameterδo is kept
fixed (δo = .01), while the value of the beam currents is
being varied. Ten different currents have been considered,
ranging fromI = .02 to I = .112 A, and correspond-
ing to tune depression factors ranging fromν/νo = .91 to
ν/νo = .20. In each case the scaled rms values of the hori-
zontal size of the beam(< x2 >δo / < x2 >o)

1
2 have been

calculated and are shown in Fig. 4. The gray curve in the
picture is described by eq. (1) withD = ρo/ν

2, (ν replac-
ing νo). Although eq. (1) was derived for a gaussian beam
we can see that it gives a good approximation also for a KV
distribution if the ratioν/νo is sufficiently high. However,
it gives increasingly and excessively larger values asν/νo

decreases.

5 CONCLUSIONS

As expected the presence of dispersion increases the emit-
tance in the horizontal plane. However, for a tune depres-

1The tune depression is evaluated for the KV-beam in the limitδo →
0. Only in this limit the tune depression is a well defined quantity.
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Figure 4:(< x2 >δo / < x2 >o)
1
2 as a function ofν/νo,

(δo = .01).

sion factor ofν/νo ∼ .3 andδo = .01 the growth in emit-
tance, relative to the case where no dispersion is present,
remains below5%.
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