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Abstract as [1]

We analyze particle diffusion and emittance growth in- 27 q 9

duced by discrete-particle effects in two-dimensional self- — + £.(s) & = ——5—=—— ==
) i : X . X 2 P BEmc? 0%,

consistent numerical simulation studies of beam dynamics. b

In particular, an analytical model is presented which de-

(I)(Q) (3’3%7 glv 8)7 (3)

d%g 0

scribes the slow time-scale variation of edge emittance for y; + ko (s) s = _%2 — o) (%, 55, 8). (4)
a perfectly matched beam in a periodic solenoidal magnetic ds Yy By me? Oyi
focusing field. A scaling law for edge emittance growth is, Egs. (3) and @),i = 1,2,...N,, v = (1 —

obtained. B2)~1/2 is the relativistic mass factorp and ¢ are the

particle rest mass and charge, respectively(s) =
1 DISCUSSION [4B-(s)/27Bymc2)? is a measure of the strength of the

There has been a growing interest in the study of higHocusing field, and
current electron and ion accelerators for a variety of ap-
plications. An important issue in the development of such (s),~ - B B NI 7t
advanced accelerators is to avoid beam halos and assoﬁéi(—)(xi’yi’s) TN, 4~ (i = 25)"+ (% = 95)]
ated beam losses [1]. While modern accelerator design re- F=10#0) (5)

lies heavily on self-consistent computer simulations, acClis e self-field scalar potential associated with the beam
rate predictions of the processes of beam halo format'%ace-charge.

and beam losses have not been accessible in the simuIaTn order to develop an analytical model to describe
tions because of discrete-particle effects [2]. In this Pay
per, we derive a scaling law which governs the process
of edge emittance growth and particle diffusion induce
by discrete-particle effects in self-consistent simulations apchinskij-Vladimirskij (KV) equilibrium function [1].

periodically focused intense charged-particle beams. | o kv equilibrium, the beam density is given by
Let us consider a thin, continuous charged-particle ’

N &

iffusive behavior induced by discrete-particle effects in
Bam dynamics, we first consider the limit of a smooth
quilibrium distribution of particles corresponding to the

beam which propagates with average axial velogGiye, o N/mrd(s), 0<r<ry(s)
through an axisymmetric linear focusing channel provided 7xv (Z,7,s) = { o U LS ro(s) )
by a periodic solenoidal magnetic field ’ ’

- . wherer = (22 + y?)V/2 = (2 + §%)"/? is the radial co-

Bo(w,y,s) = B(s) €: — [B(s)/2] (z€: +y¢y). (1) ordinate, and, = 7,(s) is the beam radius. The scalar

In Eq. (1)s = = = Byct is the axial coordinateB, (s + potential for the self-electric field is given by

S) = B.(s) is the axial component of the applied magnetic

ield, S iodici Ry (#,3,5) = —gNT* /ri(5) (7)
field, S is the fundamental periodicity length of the focus- Kv\L: Y, S GINT /TS

ing field, ¢ is the speed of light imacuo, and the “prime”

denotes derivative with respect4o in the beam in(te;rior (r < m). Substituting
In the present two-dimensional macroparticle model, th&'*) (Zi, §i, s) = 3y (4,7, s) into Egs. (3) and (4), the
beam density is given by equilibrium particle orbits:; (s) andg;(s) can be expressed

as
N, ~
N & Ti(s) = Agiro(s) cos[(s) + dail, (8)
n(@,y,5) = 7= > 0le —2:(s)]0ly —wi(s)], ()
Pi=1 gl(s) = Ayi T'b(s) SIHW(S) + ¢yi]v (9)
where N and N, are the number of microparticles where A,;, A, = (1 — A2)'Y2, ¢,; and ¢,; are

and macroparticles per unit axial length of the beantonstants determined by the initial conditions(s) =
respectively, and(z;,y;) is the transverse displace-4e¢ fos ds/r?(s) is the accumulated phase of the betatron os-
ment of theith macroparticle from the beam axis atcillations, and,(s) = (s + S) solves the beam envelope
(z,y) = (0,0). Under the paraxial approximation, equation

we can express the transverse equations of motion for

the ith macroparticle of the beam in the Larmor frame )+ ko (s)ry — K/ry — (4€)? /13 = 0, (10)
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with € being the unnormalized rms emittance of the g4 . K K N Cibi — Becs
— 2 332, -2 ; _ no_ - iVt B (14)
beam, andK = 2¢°N/~v;5;mc”, the normalized per A E > 2
X Canen ds 2 oilNp _— = b5+
veance of the beam. The particle distribution func- J=1(3#1)

tion for the KV equilibrium can be expressed asyhere

frv(@,5,8, 7, 5) = (N/1662n2) 5(A2 + A2 — 1), where

d(x) is the Diracs-function. Because the four-dimensional B; = —(A,;/2)sin Ay, Cj = (Ayi — Agjcos Agj)/2,
phase-space volume element is givenddylydz'dy’ =

16€2A, A, dA,dA,dg.dd,, integratingfxy overA,, ¢,

and ¢, yields the distribution function fo, over a KV bj = [(Aui — Ay cos Agj)” — Aij sin? Agj
beam —Aij cos(2Ay;)]/2, (15)
2NA 0<A,<1
— T - r = ’ 1
Frev(Aq) { 0, A > 1, (11) ¢ = (Agi — Agjcos Agj) Az sin Ay + §A§j sin(24A4;),

where [;* Fiv(A;)dA, = N. Note from Eq. (11) that with A,; = éuj — ¢ @NdA,; = by — ¢ui. Since the
the largest concentration of particles occursdat = 1.  derivation of Egs. (13) and (14) does not require the explicit
Note also from Eq. (8) that particles with,; = 1 reach form of the focusing magnetic fiel®,(s), Egs. (13) and
the edge of the beam with; = 7, as they execute beta- (14) are valid for an arbitrary periodic focusing channel.
tron oscillations. Therefore, they are most likely to leave In principle, detailed dynamics of edge particles initially
the beam core under the perturbations induced by discretith A,; = 1andA,; = 0 can be analyzed using Egs. (13)
particle effects. and (14). In this paper, however, we examine patrticle dif-
In numerical simulations as well as in experimentsfusion induced by discrete-particle effects. To describe the
the beam density deviates from the smooth beam dediffusion process quantitatively, we introduce the quanti-
sity nxv (Z,7,s) of the KV equilibrium. For a coarse- tiesu(s) = (Azi) ando?(s) = ((Azi — p)?), where( )
grained uniform density distribution, the deviation isstands for the average over particles that are initially lo-
small when there is a large number of particles. Suctated atd,; = 1. We compute the expectation values of
small deviation will induce slow-time-scale evolution ofdu/ds = (AL,) andd®0?/ds* = (AL, — 1//)?) by ensem-
Azi(s), Ayi(s), ¢zi(s) and ¢yi(s) in the particle orbit ble averaging over all possible beam distributions which
given in Egs. (8) and (9). In the remainder of this papegpproach the KV distribution wheN,, — co. The results
we analyze the dynamics of edge particles initially witraresu(s) = p(0) = 1, and
Agi(s=0) = 1andA,;(s=0) = [I — A2,(s=0)]*/2 = 0,
because they are most likely to diffuse away from the o(s) = Ds*, (16)
beam core as discussed previously. We disregard dynam- e o
ical couplings betweetid,;; ¢,:) and (Ay;; ¢,:) because where the ‘diffusion’ coefficient is given by
Ayi(s) ~ 0, and introduce the dimensionless variables
and para;meters defined Isy/S — 5, 7/(4€8)/? — 7,
§/(4eS)2 = g o/ (4eS) V2~ 1o, S = ke AN (1N [ g frev (B, G5 8, 0 8)dEdgdE A €5 =
SK/4e — K. Substituting Eq. (8) into Eq. (3), and taking f(leEj/Jr évjfcf;)féz‘g/i_izzﬁz it é/r]wou)ld t])eys]treésgij tgﬁat un-
into account thelow dependence afl,; and¢,;, we find lik | diffusi J 7 h iamdeh . i
that ike usual diffusive processes, the varia ere is pro
portional tos?. Due to the highly oscillatory nature ¢f,

D(KaNP):EK2/NP7 (17)

Azi Ol our best estimate of the value é6fis ¢ = 0.7+ 0.3. In
1o xi .
[A“' "o rp ] c0s(¥) + Pai) dimensional units, it follows from Eq. (16) that the edge
A emittancete evolves according to
— |:i + Aa:i QS;% TI/):| Sin(d) + ¢a:z) - (12) _
"o K (4€(s)) = 4e(0)[1 + K252 /1662 (0)N,].  (18)
Y s) o a(s)
4gN Oz; [ Kvl To verify the scaling law in Egs. (16) and (17), we carry

where use has been made of Eq. (10). It is evident out self-consistent simulations by integrating Egs. (3) and
' ' F4) numerically for various particle distributions. We adopt

I (s) — (s) i R .
Eq. (12) t.hatA“ = 0= ¢, foro . Picv: the following procedure to calculate the diffusion about
To derive a closed set of equations for the slowly vary,  _

. iablesA d Eq. (12 ¢ Ay In such a self-consistent, a first set &f,
ing variablesA,; andé;, we average Eq. (12) over fast macroparticles is loaded corresponding to a KV distribu-
oscillations pertaining to the focusing field and the bet

ilati i ‘ q aﬁon, a second set aV¥, test particles is loaded at,; = 1
tron osci atlolgs. lea ing use of Egs. (5), and (7)-(9), W&yith 4 uniform distribution of¢,; in the range from 0 to
can express Eq. (12) as 2. As the beam propagates through the focusing channel,
N, the particles in the first set interact with each other self-
dAg; K Bib; + Cic; : : :
- _ 23% T2 (13) consistently, whereas the test particles experience the elec-

)

ds Np J=1G24) 3 + C? tric and magnetic forces imposed by the particles in the first
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set. Integrating Eq. (10) concurrently in the simulation and -6
using the relatiom,; = [(Z;/7)% + (& 1} — & 1p)?]/2,
the expectation values of(s) ando?(s) over the test dis- 8] e SIMULATION
tribution are readily computed. Results are summarized in — D=aqa K2
Figs. 1-3. N -10f
x 104 N i
6 ‘ D -12
o
5. 1 -14f
| . | -16(
W *
L -18 ' ' : '
&’l 3 . 3 -2 -1 0 1 2
o | | log, K
4 fsns :ta..m....“.‘.“....m.....-H ........................................ ] Figure 2: Log-log plot ofD versuskK.
0 ‘ . ‘ -10
0 1 2 3 4 5 6 | |
S -1l e SIMULATION
— -1
Figure 1: Plot ofr2 /s? as function ofs. A -12} — D=BN,
®
Figure 1 shows plots of?/s? versus the propagation &N 13t °
distances obtained from a self-consistent simulation of in- ® RN
tense beam propagation through a sinusoidal periodic fo- _14} N
cusing channel. The choice of system parameters in Fig. 1 °
corresponding taVv, = 1024, N, = 512, K = 0.5, and -15}
k. (s) = [ag + ay cos(27s))?, whereay = a; = 0.648.

Due to small residual correlation in the initial distributions -16

of test particles and background macroparticles, the value 8 9 10 1 12 13

of 02/s? is large fors < 1. As the beam propagates, the I092 Np
residual correlation decays rapidly, and the valueofs? .
approaches a plateau for> 1, where the diffusion coeffi- Figure 3: Log-log plot ofD versusn,,.

cient is calculated to b® = 1.0 x 1074 (¢ = 0.4), as in-
dicated by the dashed line. As the beam propagates further

through the focusing channel, the plateau levels off becauseT0 conclude, we have obtained a scaling law for edge

the test particles become widely spread abbyt= 1 emittance growth induced by discrete-particle effects in

. . - : . two dimensional self-consistent simulations of intense
The scaling law is verified by self-consistent simula-

tions. Figure 2 shows a logarithmic plot & versusk charged-particle beams in a periodic solenoidal focusing

obtained from self-consistent simulations for beam pro fl.eld' The scaling law may be applied to establish crite-

agation through the same periodic focusing channel as Erg l;Of;?;;l:{s:]eai'én&iﬁToztsugsles of the process of beam

Fig. 1. In Fig. 2, the number of background macroparti- Work supported by DOE Grant No. DE-FG02-95ER-

cles is kept at a constant value 8f, = 1024. The dotted
curve is from the self-consistent simulations, whereas t #0919 and AFOSR Grant No. F49620-94-1-0374. R. Pak-
er also supported by CAPES, Brazil.

solid line is the analytical result given By = oK%, where
a=¢/N, =3.5x10"*(£ = 0.35). InFig. 3, the diffusion
coefﬁéieﬁltD is plotted(versusv ) as obtained from self- 2 REFERENCES

consistent simulations of beam propagation through the] C. Chenand R. A. Jameson, Phys. RE&2, 3074 (1995) and
same periodic focusing channel in Fig. 1 for a fixed value references therein.

of K = 0.5. The dotted curve is from the self—consistenxz] R. W. Garnettet al., AIP Conf. Proc. No377, p. 60 (1996).

simulations, whereas the solid line is the analytical result

given byD = BK?, wheref = £K? = 0.12 (£ = 0.48).

In comparison with Fig. 2, data fluctuations in Fig. 3 are

larger because the initial distribution changesg\ass var-

ied. Nevertheless, it is evident in Fig. 2 and 3 that simu-

lation results are in good agreement with the analytically

predicted scaling law.
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