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Abstract

Using the core/test-particle model described in a compan-
ion paper in these proceedings1 (“Theory of Longitudinal
Halo in rf Linacs: I. Core/Test-Particle Formulation,” by J.
J. Barnard and S. M. Lund), we analyze longitudinal beam
halo produced by resonant self-field interactions in intense,
ion-beam rf linacs. It is shown that particles moving in the
presence of the space-charge forces of an oscillating, mis-
matched ellipsoidal beam bunch can be resonantly driven
to large longitudinal amplitude. This resonantly produced
halo is first analyzed in a limit where it is most simply un-
derstood, with particles moving purely longitudinally and
with linear rf focusing. Then modifications of the reso-
nance induced by nonlinear rf and transverse-longitudinal
coupling are explored.

1 INTRODUCTION

Resonant interactions between particle orbits and oscil-
lating space-charge forces associated with a mismatched
beam core are known to be a significant cause of transverse
(⊥) beam haloI2−I5,2−4. Recently, simulation work using
idealized core/test-particle models has suggested that anal-
ogous, resonantly produced halo may occur longitudinally
and be an issue of concern in intense-beam applications2.
Here, we examine resonantly produced longitudinal (‖)
halo using a more detailed core/test-particle model devel-
oped in an accompanying paper (Ref. 1, hereafter referred
to as Paper I). In Paper I it was shown that a low-frequency
mode (LFM) of a mismatched ellipsoidal beam bunch with
uniform space-charge can drive a low-order longitudinal
resonance (LR). This LR leads to‖ beam halo with analo-
gous properties to that of resonantly produced⊥ haloI2−I5.
To understand the essential physics that determines the
structure of the resulting‖ halo, the LR is numerically
and analytically analyzed under increasingly realistic con-
ditions in Secs. II-IV. The notation employed in this paper
is developed in Paper I. Specific references to citations and
equations from Paper I will be denoted by the prefix I. All
model results are illustrated using the parameters of the 100
MeV point of an intense proton-beam linac presented in the
Table of Paper I. This linac is the normal conducting design
originally considered for the Accelerator Production of Tri-
tium (APT) project.

2 LINEAR RF FOCUSING

To simply elucidate the essential features of the LR, a lin-
ear rf approximation is taken [see Eq. (I-5)] where the‖
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Figure 1: Poincar´e plots of energy (∆E) and phase (∆φ)
phase-space forδrz/rz0 = 0.1, I = 200 mA, and:a. (top)
Linear rf andx⊥ = 0. b. (middle) Nonlinear rf andx⊥ =
0. c. (bottom) Nonlinear rf andx⊥ 6= 0.

focusing force is linear about displacements from the syn-
chronous particle, envelope motion is assumed to be in a
pure linear LFM (as opposed to a general linear mode su-
perposition of a LFM and HFM, or a finite amplitude so-
lution to the full nonlinear envelope equations), and only
on-axis particles (i.e.,x⊥ = 0) are considered. To visu-
alize the structure of the LR in∆φ − ∆E phase-space,
particles are initialized with∆E = 0 and∆φ uniformly
distributed over half the phase-width of the rf bucket and
Poincaré plot images of the particle phase-space are formed
by numerically integrating Eqs. (I-4) with respect tos and
superimposing strobed snapshots of the‖ phase-space ac-
cumulated ats where the‖ envelope radiusrz is minimum
(at s-increments of2π/kL). A typical Poincar´e plot pro-
duced by accumulating long enough to clearly visualize the
LR is presented in Fig. 1(a) for 20 particles and an enve-
lope mode amplitude ofδrz/rz0 = 0.1. The solid vertical
lines indicate the phase width of the equilibrium beam ra-
dius rz0 and the dashed vertical lines indicate the phase
extent of the envelope oscillations. Particles deep within
and far outside the core of the beam undergo simple de-
pressed and undepressed synchrotron oscillations, respec-
tively. At intermediate particle oscillation amplitudes there
is a strongly expressed resonant structure in which particles
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undergo approximately two oscillation periods over a LFM
envelope period, thereby identifying the LR suggested in
Paper I. Higher-order resonances with smaller particle os-
cillation amplitudes also appear. Such resonances become
stronger and interact with the LR with increasing space-
charge forces (i.e., increasingI).

In analogy to Gluckstern’s analysis of transverse beam
haloI4, the LR can be analyzed analytically if, in addition
to the assumptions above, a limit of a spherical bunch in the
beam frame (i.e.,γsrz0 = r⊥0) is taken. In this case, the
space-charge force exterior to the bunch [see Eq. (I-1)] has
a simple inverse-square fall-off∼ ∆z/|∆z|3 exterior to the
bunch, and the equations of motion (I-4) can be expressed
in a phase-amplitude form and with all non-resonant phases
averaged over to derive a phase-averaged constant of the
motionI7. This constant can be interpreted as a resonant
particle Hamiltonian given by (1)

H = −(2ks−kL)w − k2
sc

πks
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w cosΨ,

whereksc =
√

K3D/3γ2
sr3

z0 is a space-charge wave-
number,Θ(w − 1) is a Θ-function with Θ(w − 1) = 1
for w > 1 andΘ(w − 1) = 0 for w < 1, and (w,Ψ) are
coordinates related to the(∆φ,∆E) coordinates as

w =
(

∆E
∆Eb

)2

+
(

∆φ
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)2

, (2)
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b
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∆E
∆Eb
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Here,∆φb ≡ 2πrz0/βsλ and∆Eb ≡ mc2γ3
sβ2

sksrz0 are
the equilibrium bunch radii in phase and energy, and en-
velope oscillations withrz = rz0 − δrz cos(kLs) are as-
sumed. The LR phase-space determined by theH = const.
surfaces of thissphericalbunch conservation constraint is
plotted in Fig. 2 forI = 50 mA (other parameters fixed)
and with the characteristic frequenciesks, ksc andkL, equi-
librium radiusrz0, and mode amplitudeδrz/rz0 taken from
theellipsoidalbunch problem. The corresponding numer-
ically calculated Poincar´e plot of the ellipsoidal bunch is
shown in overlay. The rough agreement between these so-
lutions is due to an insensitivity of the LR structure with
respect to the precise nature of the‖ space-charge force.
For example, if the inverse-square fall-off in the exterior
space-charge force law is replaced by one with a more rapid
falloff, similar conservation constraints can be derived and
little change is observed in the LR structure. However, this
agreement appears to break down at higher bunch currents
I, suggesting a limit to this argument that has yet to be
quantified in detail.

3 NON-LINEAR RF FOCUSING

The linear rf approximation fails as distance from the syn-
chronous particle is increased. Moreover, even the equi-
librium bunch can occupy a significant fraction of the rf
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Figure 2: Overlay of theoretical (spherical bunch) and sim-
ulated (elliptical bunch) LR energy (∆E) and phase (∆φ)
phase-space for linear rf,x⊥ = 0, I = 50 mA.

wavelength. In this section, modifications of the LR in-
duced by the sinusoidal nature of the applied rf focusing are
analyzed numerically. For simplicity, all assumptions out-
side of the linear rf focusing limit of the ellipsoidal beam
analysis in Sec. II are maintained (i.e., on-axis particles
and a linear LFM envelope mode). The phase space ob-
tained is presented in Fig. 1(b) for the same parameters as
Fig. 1(a). Note that the LR structure now has a left-right
asymmetry associated with the anharmonic nature of the rf
focusing and is well confined within the separatrix of par-
ticle loss for the rf bucket. At larger mismatch amplitudes
δrz/rz0 the structure becomes broader and moves closer to
bucket seperatrix, but for|δrz |/rz0 < 0.5 does not lead to
particle loss from the bucket. This result is illustrated in
Fig. 3, where the phase-variation (in∆φ) of labeled struc-
ture features is plotted as a function of mismatch ampli-
tude|δrz |/rz0. Note that the width of the LR structure (as
measured by the phase widths of XL1 to XL2 and XR1 to
XR2) increases with amplitude and approaches the beam
core, while the structure O-point varies little with ampli-
tude. At large amplitudes, the close proximity of the LR
structure to the core (±∆φeq = phase edges of core) sug-
gests that it will be easily populated, potentially degrading
beam quality. However, as a consequence of the nonlin-
ear field structure, halo extent appears to remain confined
within the extent of the rf bucket (indicated with S± mark-
ers).

When the bunch currentI is varied with nonlinear rf fo-
cusing, an interesting bifurcation of the LR is observed.
Namely, at low- (I < 22.1 mA) and high-currents (I > 284
mA), the low-order LR disappears. Furthermore, at high-
currents, higher-order resonances with smaller particle os-
cillation amplitude appear to dominate. This situation can
be understood with reference to Fig. 4. Here, the maximum
particle frequencykM , which generally occurs exterior to
the beam core, is numerically calculated as a function ofI
(with other parameters fixed). Note that for low and high
currents, half the LFM frequency (kL/2) falls above the
maximum frequencykM , thereby precluding the LR (see
arguments in Paper I). Note that higher-order resonances
are still possible forI > 283 mA as demonstrated by the
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kL/3 curve falling betweenkM and the depressed core fre-
quencyks. Consistent with Fig. 4, no resonances are ob-
served forI < 22.1 mA.
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Figure 3: Phase (∆φ) measures of LR features versus mode
amplitude(|δrz |/rz0) for nonlinear rf,x⊥ = 0, I = 200
mA.
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Figure 4: Maximum particle (kM ), depressed and unde-
pressed synchrotron (ks andks0), and subharmonic LFM
envelope mode (kL/2, kL/3, andkL/4) frequencies versus
bunch currentI with nonlinear rf.

4 EFFECTS OF⊥ / ‖ COUPLING

Since the accelerator beams have finite⊥ emittance, par-
ticles will, in general, have finite⊥ betatron oscillations
(x⊥ 6= 0) and, outside the bunch, this motion will intro-
duce⊥/‖ coupling in the particle equations of motion. This
coupling is included in the core/
test-particle model derived in Paper I. In this section, we
analyze the effects of this⊥/‖ coupling on the LR. In Fig.
1(c), we show a Poincar´e phase space plot for the same pa-
rameters as Fig. 1(b), with the exception that all particles
are initialized atx = 0.6r⊥0 instead ofx⊥ = 0. No-
tice that the LR structure persists, although it is somewhat
smeared.

It has been noted3 that under some circumstances‖ par-
ticle oscillation amplitude can be converted into larger⊥
oscillation amplitude. We confirm the qualitative obser-
vation that such conversion occurs, but fail to confirm
the magnitude of the effect. To investigate this we simu-
lated four particles, all with identical initial⊥ coordinates
x = 0.6r⊥0 = 1.1 mm and varying initial‖ ∆z (three with
∆z/rz0 = 0.4, 0.94, and 2.5, and a fourth at 0.80 of the
maximum‖ phase of the stable rf bucket at∆z/rz0 = 3.0).
These scaled parameters were similar to those employed in
Ref. 3, although the overall beam and accelerator parame-
ters were different. As in Ref. 3, we initialized the LFM
and HFM envelope mismatch modes consistent with total

amplitudes ofδrz/rz0 = 0.1 andδr⊥/r⊥0 = 0.1, and nu-
merically integrated the equations of motion (I-4) for the
four particles under the approximation of linear rf focus-
ing. In Fig. 5 we present a Poincar´e plot of the transverse
(x − x′) phase-space obtained while strobing at the fre-
quency of the HFM. The two particles with the large initial
‖ amplitudes increased their⊥ amplitudes by a factor of
approximately 1.8, reaching amplitudes slightly exterior to
the⊥ beam extent. This is in contrast to factors of up to
30 seen in Ref. 3. For these parameters, a factor of 1.8 is
consistent with particle motion bounded by the equipoten-
tial corresponding to the total energy of a particle moving
in the potential well of amatchedbeamI7. The main effect
of the coupling appears to allow the particles to access a
larger fraction of the available phase-space bounded by the
total potential in the absence of mismatch.
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Figure 5: Poincar´e plot of⊥ phase-space of four particles
with identical initialx = 0.6r⊥0 = 1.1 mm and varying
initial ∆z interior and exterior to the core.

5 CONCLUSIONS

A core/test-particle model developed in Ref. 1 has been em-
ployed to explore‖ beam halo due to resonant interactions
with envelope oscillations. Characteristic frequencies of
particle and envelope oscillations play a critical role in de-
termining the extent and structure of the halo. Model pre-
dictions of halo extent are shown to persist under increas-
ingly realistic conditions.

6 ACKNOWLEDGMENTS

The authors wish to again thank R. Ryne, T. Wangler, and
R. Gluckstern and in addition note helpful discussions with
D. Bruhwiler (⊥ / ‖ coupling) and C. Chen, A. Friedman,
and I. Hofmann.

7 REFERENCES

[1] J.J. Barnard and S.M. Lund, “Theory of Longitudinal Beam
Halo in RF Linacs: I. Core/Test-Particle Formulation,” these
proceedings.

[2] T.P. Wangler, R.W. Garnett, E.R. Gray, R.D. Ryne, and T.S.
Wang, Proc. of the XVIII Int. Linear Accel. Conf., Geneva,
1996, p. 372.

[3] D.L. Bruhwiler, loc. cit. 2.

[4] M. Pabst and K. Bongardt, loc. cit. 2.

1934


