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Abstract

This paper first proposes a practical model for output sig-
nals of BPM electrodes. The model is based on a definition
of the geometric center of a BPM head, and on the assump-
tion that the character of the head can be specified only by
a small number of parameters, the relative gains of elec-
trodes. On the basis of the model, calibration was done to
find the relative gains of all KEKB LER BPM heads. The
paper reports and discusses the calibration results.

1 INTRODUCTION

Stability of the closed orbit is essential for stable opera-
tions of rings, particularly of those requiring strong sex-
tupole magnets. To stabilize the beam orbit, the first step
would be to measure the beam position with respect to the
design orbit, or to measure the absolute beam position. On
installation of a BPM head its mechanical reference axis is
alligned to the ideal orbit. For the absolute position mea-
surement, therefore, location of the electric center, relative
to the reference frame, of each BPM head must be known.
This is the main reason why we need calibration of BPM
heads. Here we apply a signal wire method to the calibra-
tion.

This paper first proposes a practical model for output
signals of BPM electrodes, and define a geometric mon-
itor center by assuming that each electrode has its ideal
position-response function. This model also assumes that
the real output signal from an electrode is proportional to
its response function multiplied by a constant factor, called
its gain, and that the gain is independent of the beam posi-
tion [1]. We would say here that character of each head can
be specified only by a small number of gains.

In a real BPM head, variation of the gains from their
ideal values displaces its electric center from the ideal one.
Following the present model, the calibration is to know the
relative gains among electrodes of each BPM head. A least-
square method estimates the gains from many output data
with various wire positions. After the calibration the elec-
tric center is expected to coincide with the geometric one.

With this method the calibration of KEKB LER BPM
heads is in progress. The present paper reports and dis-
cusses the results.

2 MODELING OF OUTPUT DATA

2.1 Dependence of fields on the beam position

Consider electromagnetic fields produced by a point charge
moving inside a perfectly conducting uniform pipe. The
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Figure 1: Coordinate system and an image of the model
monitor.

point charge is moving with the light velocity along an or-
bit, parallel to the axis, displaced byR(X = R cos θ, Y =
R sin θ) shown in Fig.1.

The moving charge couples only to TEM fields, whose
potential is governed by a two-dimensional Laplace’s equa-
tion. We consider a Green functionG2(r, r′)

G2(r, r′) = − 1
2π

log |r − r′|, (1)

which satisfies

∆2G2(r, r′) = −δ2(r − r′), (2)

where∆2 andδ2(r) are the two-dimensional Laplacian op-
erator andδ-function.

Then the field potentialΦ(r) is a sum of the direct field
given by the Green function, and fieldsΦimag(r) produced
by the image charge on the pipe surface. With a constant
K we can write

Φ(r) = K log |r −R| + Φimag(r). (3)

The direct field depends onR aslog |r−R|, which can be
expanded into a series

log |r −R| = log r −
∑
k=1

1
k

(
R

r
)k cos k(φ − θ). (4)

Finally we have

Φ(r) = K[(log r − C0(r))

−
∑
k=1

1
k
Rk cos kθ(

cos kφ

rk
+ Ck(r))

−
∑
k=1

1
k
Rk sin kθ(

sin kφ

rk
+ Sk(r))], (5)

whereCk(r) andSk(r) corespond to the fields by the im-
age charge.
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Now we find that the field must be expressed as a su-
perposition of components each of which is derived from
the k-th moments of charge distribution,Rk cos kθ and
Rk sin kθ, and hence depends on the beam position(X,Y )
through a special manner only with the k-th harmonic func-
tions ofX andY .

2.2 Output signal of BPM

Electrodes of a BPM head are nothing but antennas probing
the field inside the chamber, as shown in Fig.1. The output
of the electrode is determined by the field strength at its lo-
cation, or more precisely, the averaged field strength, with
a weight function, over the electrode port. The relation be-
tween the averaged field strength and the beam position is
called a position-response function. For an ideal BPM head
the output of each electrode is determined only by the re-
sponse function. For a real BPM, however, the output of
an electrode is differed from the ideal repsonse function
mainly due to stray capacitance and impedance of the vac-
uum feedthrough. Now we are in a position to write down
a model for the output signal from the i-th electrode,

Vi = qgiFi(X,Y ), (6)

whereFi(X,Y ) is the ideal position response function and
is normalized byFi(0, 0) = 1. The parameterq measures
the strength of simulating current on the wire. The fac-
torsgi are gains representing the signal imbalance among
the electrodes. By giving each electrode its ideal response
function we have just defined a geometric center so that
equations (6) hold simultaneously.

We have known thatFi(X,Y ) can be always expanded
into a series of harmonic functions ofX andY ,

Fi(X, Y ) = 1 +
∑
k=1

Rk(ai(k) cos kθ + bi(k) sin kθ)

= 1 + ai(1)X + bi(1)Y

+ ai(2)(X
2 − Y 2) + bi(2)(2XY )

+ ai(3)(X
3 − 3XY 2) + bi(3)(3X2Y − Y 3)

+ ... (7)

Coefficientsai(k) andbi(k) are determined by the cross-
section of the BPM head and geometry of the electrode,
and can be calculated with numerical methods.

Variation of performance of BPM heads is introduced
not only by the impedance imbalance but also by mechan-
ical fabrication errors. These errors produce a responce
function different from the ideal one with the result of a
slightly wrong position sensitivity. What we want to mea-
sure, howevere, with the BPM system is the absolute posi-
tions with respect to the ideal orbit, rather than precise po-
sition movements. This is the reason why we have adopted
the present modeling of a BPM head. Even with the me-
chanical errors, we can define the geometric center and find
its absolute position relative to the reference frame by the
calibration. Moreover, considering recent mechanical fab-
rication technique we expect that the variation of the re-
sponse function would be sufficiently small.

3 GAIN ESTIMATION

How to estimate the gains has been reported before [1].
Only a brief description for calibrating the gains is pre-
sented here. Let the number of electrode ben and the total
number of the measurement bem. At each measurement
the wire position is changed and the output signal of each
electrode is measured. At the j-th measurement the output
signal from the i-th electrodeVij can be written as

Vij = giqjFi(Xj , Yj), (8)

where qj is the signal strength of the wire, normalized
by g1=1, andXj andYj are the wire position at the j-th
measurement relative to the unknown geometric center.
Notice that the wire impedance is dependent on its position
and that the strengthqj may change at each measurement.
After the m-th measurement the unknown parameters are
g2, g3, ...,gn, and (q1, X1, Y1), ..., (qm, Xm, Ym) with the
total number of3m+n− 1. On the other hand the data are
(V11, V21, ..., Vn1), ..., (V1m, V2m, ..., Vnm) with the total
number of4m. If the number of the data is larger than that
of the unknown parameters, we can estimate the unknown
parameters with a least square method.

4 CALIBRATION RESULTS AND DISCUSSION

We have finished the calibration of two types of circular
symmetric BPM heads for the KEKB LER. One is 94 mm
in diameter, and the other is 150 mm. Each BPM has 4
output ports. Signals were measured with a narrow-band
detector with a center frequency of 1.018 GHz, two times
the acceleration frequency.

Measurements were done with a 1mm step both in the
horizontal and vertical directions, within a rectangular area
of ± 10 mm(H) by± 6 mm(V). The total number of mea-
surement points for each BPM head is 21×13. The present
analysis, however, uses only 25 data, which are sampled
within the same area by 5 and 3 mm steps in the horizontal
and vertical directions, respectively. The number of un-
known parameters is 78 whereas that of the data is 100.

Table I shows an example of fitting results. In the analy-
sis all the data are divided by a common factor so thatVij

andqj are close to unity. The coordinates of the wire po-
sition are fixed on the reference frame of each BPM head,
and the wire is set at the reference center at j=13 in Table I.
We can, therefore, estimate displacements of the geometric
center from the reference axis by readingX13 andY13.

Fig.2 displays the estimated gaing2 of all circular BPMs
of 94mm in diameter. Fig.3 shows the displacement of the
geometric center from the reference axis of the BPM head.
Systematic displacements of the center are explained by
the fact that some heads have had their reference frames
trimmed two times. The rms difference between the output
and the expected output from the estimated parameters,√∑

i,j

(Vij − giqjFi(Xj , Yj))2/4m,
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Table 1: An example of data analysis
[A:LER001.data/Fri-20/Sep/1996@16:37]

g1 g2 g3 g4

1 .962 .970 .952
j qj Xj(mm) Yj(mm)

1 .992 10.120 5.917
2 1.000 10.115 2.971
3 1.006 10.100 -.004
4 .999 10.123 -2.991
5 .994 10.168 -5.995
6 1.010 5.136 6.033
7 1.019 5.096 2.999
8 1.025 5.127 -.015
9 1.017 5.123 -3.025

10 1.018 5.118 -6.030
11 1.016 .099 5.981
12 1.027 .055 3.030
13 1.030 .107 .006
14 1.027 .074 -3.016
15 1.027 .105 -6.017
16 1.012 -4.929 5.997
17 1.022 -4.956 3.027
18 1.025 -4.942 .014
19 1.021 -4.967 -3.003
20 1.021 -4.921 -6.018
21 .995 -9.983 5.968
22 1.004 -9.941 3.017
23 1.005 -9.951 .046
24 1.004 -9.979 -2.959
25 1.001 -9.978 -5.990

Figure 2: Estimatedg2 of all LER arc BPMs.

is summarized in Fig.4.
The rms difference, which is introduced by imperfec-

tion of the model and measurement errors, is satisfactorily
small. This fact demonstrates validity of the present model
and reliability of the calibration system. By analyzing the
covariant matrix associated with a least square fitting we
can know confidence limits of estimated parameters. As-
suming that the measurement error is at most a typical rms
difference of4 × 10−4, typical confidence limits ofgi, qj ,
Xj andYj would be1×10−3, 5×10−4, 17µm and 11µm,
respectively.

To find Xj and Yj we have used only ideal response
functions, but have not used any information of the abso-
lute wire positions on the calibration bed. It is, therefore,
a good examination for verifying the scale of the model
response function to compare the estimated wire positions
and the calibrated ones. After subtracting the displacement
of the geometric center, we found that the rms difference
between the two sets of positions was as small as 34µm

Figure 3: Displacements of the geometric center in the hor-
izontal and vertical directions.

Figure 4: The rms difference of all LER arc BPMs.

for the case in Table I.
Finally we close the paper with adding a comment to

the geometric monitor center. In beam operations the sig-
nals from each BPM head must travel through cables, con-
nectors, switches and so on, before reaching detectors. It
is afraid that initial and long-term variations of perfor-
mance of these elements break the balance of the output
of each head and make its electric center wander. Fortu-
nately enough, however, we can apply eq.(6) also to signals
measured at detectors, and can expect that the performance
variations contribute only to changing the gains. This ob-
servation leads an idea that the overall gains at detectors
can be estimated by changing beam orbits as in the wire
calibration method. We are now in a position to emphasize
that the geometic center defined here is stable with respect
to the reference frame of each head, and that the center po-
sition can be searched by re-calibration with beams [1].
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