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Abstract

Applying a Siberian snake to obtain longitudinally polar-
ized electron beam is discussed. Depolarization effects are
analysed and spin matching conditions to decrease the de-
polarization are derived.

1 INTRODUCTION

Siberian snake was invented at mid-70th mainly as a mean
against spin resonances which can destroy the beam polar-
ization in circular accelerators[1]. Recently this concept
has been tested and confirmed practically in a series of ex-
periments carried out at the IUCF cooler ring[2].

However, there is another important area of the snake
application, it is for obtaining longitudinal polarization at
an interaction point. First longitudinally polarized elec-
tron beam was obtained at the energy of 27 Gev on the
HERA electron ring where a pair of spin rotators was in-
stalled around the interaction point[3]. However, such the
method is difficult to apply when beam energy is lower than
10 Gev because dipole magnets of the rotator will provide
enormous orbit excursions inside the rotators. The Siberian
snake is a special kind of a spin rotator which rotates par-
ticle spin by180◦ angle around a direction lying in the
horizontal plane. This direction is called by snake axis.
An insertion of Siberian snake with longitudinal snake axis
provides automatically the longitudinal beam polarization
on a ring azimuth opposite to the snake insertion. Such a
snake can be naturally performed with the use of solenoidal
magnets. For a compensation of betatron modes coupling
introduced by the solenoids, the snake must contain also
quadrupole lenses (normal and/or rotated)1. The first ex-
periments with the solenoidal Siberian snake for obtain-
ing longitudinally polarized electrons was carried out at the
AmPS storage ring at NIKHEF[4, 5]. and demonstrated the
success of the given method.

The AmPS ring is operating in 300-900 Mev energy
range. When using a Siberian snake at higher energies one
must take into account a sharp depolarization increase with
energy.

2 SPIN MATCHING CONDITIONS

In fact, the use of one Siberian snake leads to an unusual sit-
uation when the direction of the beam polarization is in hor-
izontal plane everywhere over a ring excepting the snake it-
self. In this case the Sokolov-Ternov self-polarizing mech-
anism does not work and, on the other hand, a depolar-
ization mechanism caused by quantum fluctuations of syn-
chrotron radiation is considerably enhanced. Thus a special

1A general method of solenoid compensation is described in[6]

care must be taken to keep the beam polarization decay as
slow as it is required by experiment needs. The depolar-
ization rate is described by the well-known DK formula[7]
as:
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wheren̂ is a periodical spin solution,d = γ ∂n̂
∂γ vector,

ρ is bending magnet curvature,v̂ is an unit vector in the
direction of particle velocity. The average is taken over the
ring azimuthθ and, generally, over beam distribution.

The reduce of the depolarization timeτ is completely
determined by the value of the spin-orbit coupling vector
d. At the first-order approximation thed vector is orthog-
onal ton̂: d = Re(iDη̂∗) whereη̂ is an eigen solution of
spin motion equation orthogonal tôn. In general case the
D function can be represented as a sum of two contribu-
tions: D = Dγ + Dβ . HereDγ comes from the direct
dependence of the vector̂n on the particle energy while
Dβ results from a jump of betatron amplitudes during an
emission of a quanta.

We consider a practical case when there is no dispersion
in the insertion region (ψx = ψz = 0) and the coupling
introduced by the solenoids is fully compensated by the in-
sertion quadrupoles. For the snake located at[θ1; 2π] we
obtain the expressions forDγ,β outside the snake insertion.
TheDγ does not depend on internal structure of a snake:
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whereHz and< Hz > are the vertical field and its average
value over ring azimuth,ν0 = γa.

The form of the expression forDβ depends on a number
of solenoids used in the snake. For instance, for a snake
containing one solenoid:

Dβ = − ν0π

2 cos(πνx)

[
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) −
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where f ′Ix0 and f ′Iz0 are first mode Floquet function
derivatives taken at the midpoint of the solenoid and
J(θ) = fIxψ

′
x − f ′Ixψx.

Two solenoids snake was applied at the AmPS storage
ring This compact snake, designed and builded at BINP
(Novosibirsk), uses two superconducting solenoids with up
to 7.5 T field and five compensating quadrupoles:
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Here (sol) stands for solenoid, (sq1,sq2) are quads rotated
by 45◦ and (q) is a normal quadrupole. For two solenoids
snake one finds:
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whereGIx,z = f ′Ix,z(out) − f ′Ix,z(in) is the difference of
the first mode Floquet function derivatives at the entrance
of the first solenoid and at the exit from second one. Also
each solenoid has been treated here as having infinitely
short edges. In the above expression a point just after the
first edge is called by the solenoid entrance and a point just
before the second edge is called by the exit.

Unlike theDγ , theDβ contribution depends on lattice
functions. In particular, this fact causes the dependence of
the depolarization time on horizontal betatron tune and on
any manipulation with optics of the storage ring. For ex-
ample, in the Figure 1τ is drawn versus horizontal tune for
AmPS snake for two possible sets of gradients of compen-
sating quadrupoles.
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Figure 1: The dependence of depolarization time on the
horizontal betatron tune,E = 0.9 Gev,νz = 7.25. Circles
for normal scheme, pluses for reversed gradient scheme.

The contribution ofDβ term to the depolarization time
can be comparable or even larger than the contribution re-
sulting fromDγ . Figure 2 demonstrates the|d| variation
along azimuth of AmPS ring again for the two possible sets
of snake quadrupoles. At the top picture theDβ causes
large oscillations of|d| in the magnets on background of
smooth variation ofDγ . At the bottom pictureDβ is small
enough and this variant provides considerably larger depo-
larization time.

In order to increase the depolarization time and avoid
its dependence on the ring optics one should apply snake
scheme that cancelsDβ term. For the case of two solenoids
snake such the snake must provideGIx = GIz = 0 and,
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Figure 2: |d| along azimuth of the AmPS ring for normal
(top) and reversed (bottom) gradient scheme.

therefore:

f ′Ix(out) = f ′Ix(in), f ′Iz(out) = f ′Iz(in) (3)

It provides some relations on elements of transport ma-
trix between the solenoids. Such a snake can be called a
spin matched snake on the analogy with spin matching con-
cept, introduced for spin rotators [3]. Actually in the con-
sidered case we have only partial spin matching since it is
not possible to cancel the contribution ofDγ .

The simplest variant of spin matched snake is a scheme
where the coupling compensation is carried out by six nor-
mal quadrupoles (q1-6) inserted between two solenoids:

sol q1 q2 q3 q4 q5 q6 sol

From the relations (3), taking into account the transforma-
tion of optical Floquet functions on solenoid edges, one can
find that a transport matrix of the whole snake must have a
form: (

I 0
0 −I

)
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Figure 3: The depolarization time versus beam energy for
the VEPP-4 with matched snake.

whereI is the identity matrix. The strengths of the insertion
quadrupoles are choosen to provide such the matrix.

Applying the matched snake increases the depolariza-
tion time. Nevertheless the depolarization time decreases
rapidly with energy:
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where τp is self-polarization time calculated when the
snake is switched off.

For example, in the Figure 3 the dependenceτ on beam
energy is shown for the VEPP-4 storage ring with the spin
matched snake. Thus for typical electron storage rings in
this energy range the use of this method of obtaining longi-
tudinally polarization is restricted to the energies below 3
Gev.

3 KINETIC POLARIZATION

As follows from DK formulas[7], though Sokolov-Ternov
polarizing mechanism does not work, the equilibrium po-
larization should differ from zero level due to so-called ki-
netic polarizing mechanism caused by the dependence of
synchrotron radiation probability on a spin projection on a
field direction:

Peq = − 8
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with α− = −〈 b̂ · d
|ρ|3

〉

α+ is given by (1) and̂b is an unit vector in the direction
of magnetic field.

This mechanism, predicted theoretically, has been never
observed yet. A storage ring with a Siberian snake provides
the unique possibility to confirm its existence. The kinetic
polarization is driven by the vertical projection ofd vector

in bending magnets. For a snake with two solenoids this
projection is:

dz = −π sin(πν0)
2

+
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)

Thus the value of polarization and its sign depends both
on the beam energy and, for an unmatched snake, on the
ring optics. In the Figure 4 the equilibrium polarization
dependence on energy is demonstrated for two variants of
AmPS optics.
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Figure 4: The equilibrium polarization versus beam energy
for two variants of the AmPS ring withνx = 8.3 (solid)
andνx = 9.2 (dashed).

Spin-matched Siberian snake provides higher level of the
equilibrium polarization, but even in this case at energies
higher than 1 Gev the equilibrium polarization level be-
comes very small:
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