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Abstract

By using the intense fields of a demagnified bunch as a
final lens,  one can greatly simplify and shorten the
conventional final focus and collimation systems of linear
colliders.   In the dynamic focusing schemes described
here, the lens bunches enter the interaction region through
separate beamlines.  Design details and constraint
equations for such focusing schemes are developed for
future high energy linear colliders.

1  INTRODUCTION

1.1  Motivation

This study was motivated by the observations that the
beam delivery system for the next linear collider (NLC)
[1], consisting of a final focus sytem, a big bend, and a
collimation system, has a length one-half the length of
the main accelerating system length, and that this beam
delivery length will grow roughly as the center-of-mass
energy to the 3/2 power.  Since the length of linear
colliders built on the crust of a round earth are limited in
length to around 200 km, this scaling law becomes a
serious obstacle to building linear colliders with greater
than 5 TeV c.m. energy.

1.2  An ideal focusing system
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Figure 1.  A schematic of an ideal final focus system.  A very strong
lens is placed 3 mm from the IP.  The total length is about 2 m.  

Figure 1 shows an ideal final focus system.  FD labels a
conventional final doublet where the beamsize is only
modestly enlarged over its typcial vaues in the linac.  The
total length, from the final doublet to the IP, is a couple
of meters.  It is supposed that there is a very strong lens,
not much larger than the beam, located a couple of

millimeters from the IP.  This has the advantage that the
chromaticity,   l

∗ ∗/ β  would be so small (about 20) that

no chromatic correction is needed, and the sensitivity to
errors would be small for similar reasons.  Furthermore
since the beam is not blown up, there is no need for a
collimation system or a big bend.  In other words the
system of fig. 1 can replace an entire beam delivery
system. The problem is how to manufacture the small
powerful lens.

1.3 The Dynamic focusing idea
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Figure 2.  The dynamic focussing scheme for implementing the ideal
final focus system.

Figure 2 shows a situation in which the small lens of fig.
1 is created by a secondary beam. The study of such a
system will be the subject of this paper.

1.4  Relationship to superdisruption

The idea of using the strong fields of a particle bunch to
focus beams has been attributed to D. Leith and discussed
under the title superdisruption [2, 3].   These efforts were
largely directed at achieving stronger focusing (smaller IP
β functions), and implementation schemes were limited to
consideration of two closely-spaced bunches traveling in
the same beamline.  With dynamic focusing the main
intention is to simplify the beam delivery systems, and
lens beams are imagined to have much lower energy and
enter the interaction region through a second dedicated
beamline.

2 LINEAR COLLIDER IP PARAMETERS

Any discussion of ideas for future linear colliders must
pay attention to the constraints imposed by interaction
point (IP) considerations.
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2.1 The main IP constraint equations

The three principal IP constraint equations are the
luminosity equation, the disruption constraint, and the
beamstrahlung constraint.  We write the luminsoity

equation as F
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we have introduced a quantity F , a rationalized flux
specified by luminosity, beam energy and beam power.
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 , has been

introduced for convenience,  and equals 1 for flat beams
and 2 for round beams.

The vertical disruption constraint equation is crucial
because if the beam is not charge compensated there is a
kink instability which limits the disruption to about 15,
and for charge-compensated beams there is an instability
in the charge separation which limits the disruption to
about the same value.  It is interesting that these two
constraint conditions already determine σz.

By introducing appropriate variables, the beam-
strahlung equation can be solved analytically to give
N/(σx+ σy) as a function  of γ/σz.  The result can be
written
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where η is a factor greater than 1 which goes to 1 rapidly
for large γ/σz. Even with charge compensation, which
will be valid only to some fractional extent, one must
heed a beamstrahlung constraint equation.

One can now solve for σy and N.
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where c1 is a constant about equal to 8000.  The only free
parameter is the aspect ratio at the IP.  The Oide condition
can be used to determine the required normalized
emittance.  The β∗  thusly determined is fairly constant
with energy and has a value near 100 µm.

3 DYNAMIC FOCUSING PARAMETERS

3.1 Cromaticity condition

The chromticity
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 of the lens-beam lens is chosen

to be about 20, so for β*=150 µm,   l
∗ = 3 mm.  The

chromaticity is also the demagnification from the lens-
beam lens to the IP.

3.2 Lens beam charge per bunch

For a charge NQ in a uniform disk of radius RQ
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The fraction of the main beam not incident on the

uniform disk will be exp( )−
RQ

M

2

22σ
.  To limit this

quantity to 2%, the exponent would have to be about -4.
Furthermore, if one assumes that 50% of the beam is
outside the uniform disk, then the total charge in the lens
will be about 6 times NQ0.  For the NLC emittance, the
total charge comes out to be a workable 4 109.

3.2 Uniform lens distributions

Concerning the production of uniform bunches we remark
that there exists a phase-space density function,

ρ ∝ −1 2 2/ R r  where r 2=x2+x’2+y2+y’2, which

produces a uniform distribution  This is hollowed-out in
the center and singular at R=r.  Nevertheless one can try
to approximate this distribution at low energy. Nonlinear
elements in the lens-beam final focus system can shape
the distribution at the IP phase.

3.3 Pinch effect

Figure 3 shows the lens beam colliding with the main
beam.  Each beam focuses the other.  The ratio of the
focal lengths can be detemined to be a power ratio:
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Figure 3.  The lens beam, moving to the left, is pinched by the main
beam moving to the right..
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.  To have

a low-power lens beam, one must have a very short main-
beam bunch length.

4 MAIN CONCERNS

4.1 Parasitic crossing effects

The most challenging situation can be seen in the
multibunch geometry of fig. 4, where the beams are
separated by a distance   l

∗ δθ .  The parasitic kick can be

expanded into multipoles.  The dipole kick can be
corrected by steering, and the quadrupole kick by
adjusment of matching into the interaction region.  Even
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the sextupole term could be compensated.  But suppose
we take it as uncompensated and let it define a limit on
the beam separation.  The resulting equation is

δθ γ
γ
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9
0

N

N
Q

Q

M

Q
M
' .   At the NLC, with a divergent

angle of about 30 µr, the limit on δθ is about 1 mr.  The
parasitic crossing is not a limiting problem.

4.2 Motion of lens

Again referring to the geometry of fig. 4, if θL is small,
then the focal points as the lens beam travels through the
main beam will lie along a vertical line.  This is exactly
what is required to crab the main beam.  If θL is non-zero,
it must be small compared to the diagonal angle of the
main beam.  As pointed out in the pinch effect, the main
beam must be very short, so the diagonal angles are quite
large.  Lens motion should not be a problem.

4.3 Multibunch instability
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Figure 4.  The incoming beam geometry required for multiple-bunch
beams.

To facilitate multiple-bunch beams we must have both
the main beams and the lens beams enter and exit in
separate beam lines with a crossing angle.  The required
geometry is shown in fig. 4.  Because the energy of the
lens beam is contemplated to be smaller, one obtains a
limit
θ θ γ

γ
θM L M

L
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+
≥

2
 where θM  is the usual lower limit

on θM  arising from multibunch considerations. This

limit establishes the bound on γL /γM .  θM  depends

weakly on energy.

4.4 Jitter

The jitter of the lens beam is a serious problem, because
the lens determines the focal point for the main beam.
With the demagnifications assumed, the lens beam jitter
would have to be less than 1%.  If in fact such a small
jitter were achieved, one could contemplate a head on
δθ=0 operation.  Then the head-on lens-lens collision
would align the main-main collision if the focal length of
the lens-lens collision is twice   l

∗ .  The jitter limit in
this case comes from distortion due to the misaligned
lens-lens collision.  See ref. [2].  The jitter limit for this
case is about 6%.

5 EXOTICA

It is interesting to contemplate whether one can bypass
the Oide limit with dynamic focusing.  For the
geometries we have described the Oide limit is not
changed.  But one can contemplate long-bunch lens beam
schemes which approach the adiabatic focusing scheme
[5].  It seems that appropriate lens beams could be
prepared, but the effects of the parasitic crossing reappear
and have not been fully analyzed.

6 SUMMARY

For energies greater than 10 TeV cm, beam delivery
system lengths become unmanageable.  Dynamic
focusing is an alternative solution if micron length
bunches can be produced and accelerated.  Lens beam jitter
must be held to a few percent.  IP parameters are
improved from the ability to have round beams at the IP.
For NLC parameters one could achieve σy = σx = 20 nm,
γε = 10-6 rad-meter, and N = 5 109.   Furthermore the
collimation system, the big bend and the final focus
system are all but eliminated.  For σz = 2 µm the lens
beam to main beam power ratio is 1/30.  An energy ratio
of 25 is permitted by the multibunch instability.
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