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Abstract

In this paper, we describe the single and multi-bunch
sources of emittance dilution in the linacs of both 1 and
5 TeV center-of-mass energy linear colliders. The linacs
operate at high rf accelerating gradients with a frequency
around 30 GHz. At this high accelerating frequency, the
wakefields are very strong and we discuss the BNS damp-
ing and correction procedures as well as the alignment and
construction tolerances that are required to preserve the
transverse emittance. Finally, because the collider must op-
erate with long bunch trains, we consider the multi-bunch
emittance dilution for a few cases where either the long-
range transverse wakefield is damped or it is decreased by
a combination of weak damping and detuning.

1 INTRODUCTION

In this paper, we discuss the emittance dilutions in linacs
for linear colliders with center-of-mass energies (cms) be-
tween 1 and 5 TeV. The 5 TeV collider is based upon the
design described in Refs. [1, 2] while the 1 TeV version is
similar to the CERN Compact LInear Collider (CLIC)[3]
although using slightly different parameters which have
been optimized to reduce the effect of the transverse wake-
fields. The primary beam parameters for both cms energies
are listed in Table 1.

Center-of-mass energy [TeV] 1 5
Luminosity [1033cm−2s−1] 10 100
Part. per bunch (N ) [1010] 0.4 0.3
Bunches per train (nb) 45 200
Bunch spacing (∆t) [ns] 0.5 0.5
Bunch length (σz) [µm] 50 35
Emit. from DR (γεx/y) [10−8] 100 / 5 40 / 0.5
Emit. at FF (γεx/y) [10−8] 125 / 10 50 / 1

Table 1: Beam parameters for 1 and 5 TeV colliders

In both cases, the accelerators are based on 30 GHz rf
power. This relatively high rf frequency allows for much
higher acceleration gradientswithoutsignificantly more se-
vere alignment tolerances[2, 4]. Even though the wake-
fields are much stronger in the high frequency structures,
this scaling arises because the optimized charge and bunch
length are much smaller and thus theeffectof the wake-
fields and the required tolerances are comparable to those
in lower frequency designs.

The primary sources of emittance dilution that we con-
sidered are due to misalignments, both static and time-
varying, of the accelerator sections, quadrupoles, and
BPMs. Simulations were performed using the codes
LIAR[5] and MBTR[6] which differ slightly in the mod-
els utilized but give similar results. In the next sections, we
first describe the linacs that were studied and then discuss

the single bunch dilutions, the multi-bunch beam break-up
and emittance dilution, and finally, the jitter and stability
issues.

2 LINAC DESIGNS

The loaded accelerating gradient is 100 MV/m in the 1 TeV
case while it is twice that in the 5 TeV design. Both de-
signs have an injection energy of 10 GeV and the linacs are
constructed from standard FODO arrays. In addition, the
lattice cell lengths and beta functions, for the 1 and 5 TeV
cases, scale roughly with the beam energy to the powers
0.4 and 0.5 and are arranged into 5 or 6 separate sectors,
respectively. The linac parameters are listed in Table 2 and
the vertical beta function in the 5 TeV design is shown in
Fig. 1.

Center-of-mass energy [TeV] 1 5
Loaded acc. gradient (G) [MV/m] 100 200
Beam loading 15.7 12.3%
Total linac length [km] 8.1 15.8
Active/total length 65% 80%
Initial energy [GeV] 10 10
Init. cell length [m] 6.6 7.2
Approx. energy scaling 0.4 0.5
Average rf phase (φrf ) −13◦ −5◦

Energy overhead for BNS 2% 1%

Table 2: Linac parameters for 1 and 5 TeV colliders
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Figure 1:βy in a linac of the 5 TeV collider.

In most sectors, the phase advance per cell starts
at roughly 90◦ ∼100◦ and then slowly decreases, re-
ducing the variation of the energy spread required for
‘autophasing’[7] which is used to control the single bunch
beam break-up. In the 1 TeV case, this required energy
spread is roughly 0.8% rms while it is about 0.4% rms in
the 5 TeV case. Finally, the average rf phase required to
achieve a final relative energy spread of 0.8% full width is
-13◦ and -5◦ for the two cases while the energy overhead
required to vary the rf phases and implement the autophas-
ing is roughly 1∼2%.
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3 SINGLE BUNCH DILUTIONS

The primary single bunch emittance dilutions are due to the
transverse wakefields and the non-zero beam trajectory that
arises from quadrupole and BPM misalignments. As listed
in Table 3, we have assumed tolerances of 10µm random
misalignments of the accelerator structures and 2µm align-
ment between the quadrupoles and the BPMs; the initial
quadrupole alignment is not important. These values are
similar to those used in the NLC design[8] and would be
attained using beam-based alignment. Specifically, the ac-
celerator structures could be aligned to the beam trajectory
by measuring the beam induced dipole mode power and
the quadrupole-to-BPM alignment could be determined by
varying the quadrupole strengths; more details on the align-
ment techniques can be found in Ref. [8].

Center-of-mass Energy [TeV] 1 5
Tolerance on quadrupoles [µm] 100 100
Tolerance on rf struc. [µm] 10 10
Tol. on BPM-to-quad [µm] 2 2
Correction procedures 1-to-1 1-to-1 &

ε-bumps
Single Bunch∆εy/εy 45% 33%
Full Train∆εy/εy 46% 37%
Emittance Budget 100% 100%

Table 3:Tolerances for 1 and 5 TeV colliders; the 1 TeV version
only uses 1-to-1 trajectory correction while the 5 TeV collider also
requires the use of emittance bumps similar in concept to those
used in the SLC.

With these tolerances and correcting the trajectory with
the simple 1-to-1 method, we find∼50% vertical emittance
growth in the 1 TeV design and∼200% growth in the 5 TeV
case. While with the 1 TeV parameters, the emittance dilu-
tion after the 1-to-1 trajectory correction is acceptable, this
is not the case at 5 TeV and thus some additional form of
emittance correction has to be considered.

3.1 Emittance Correction

There are a number of possible emittance correction tech-
niques. In this paper, we describe a global correction tech-
nique where emittance tuning ‘bumps’ are varied to mini-
mize the emittance at emittance diagnostic stations located
along the linacs; a similar technique is routinely used at the
Stanford Linear Collider (SLC) to reduce the vertical emit-
tance dilution from roughly 1000% to about 100%[9]. In
our case, the emittance tuning bumps are constructed from
pairs of accelerator structures which are separated by 90◦

in betatron phase and are located upstream of the diagnos-
tic stations. The results of simulations are shown in Fig. 2
where five sets of bumps reduce the emittance dilution from
roughly 190% to about 35%. Finally, results using an alter-
nate technique, where the phase advance along the linac is
varied by small changes in the quadrupole strengths, are
describe in Ref. [10]; here, a similar six-fold reduction was
also found.
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Figure 2: Simulation of emittance growth versus distance in
5 TeV linac after correction using 5 pairs of movable accelerator
structures to minimize the emittance at the emittance diagnostic
stations; the line is the average of 40 different error distributions
with error bars to denote the variation while the crosses are the
results from one of the 40 cases.

4 MULTI-BUNCH DILUTIONS

Multi-bunch beam break-up will limit the bunch-to-bunch
spacing. In these high energy linacs, the amplitude of the
long-range transverse wakefield is reduced by ‘detuning’
the dipoles modes so that there is a spread in mode fre-
quency and/or by damping the wakefield directly. In ei-
ther case, the wakefield decays rapidly with time. Thus,
the threshold for multi-bunch instabilities, which is propor-
tional to both the bunch charge and the wakefield, is ex-
tremely sensitive to the bunch separation.

We have calculated the emittance dilution that arises
from an injection trajectory error versus the bunch separa-
tion assuming a wakefield calculated by scaling the NLC
DDS accelerator structure[8] to 30 GHz. The dilution
remains roughly equal to the single bunch dilution un-
til the bunch separation is reduced to 10∼12 rf buckets
where the beam break-up becomes significant. Similar re-
sults are found using the wakefield for the CLIC damped
structure[11] but the CLIC DDS accelerator structure[12]
does not perform as well at the shorter bunch spacing be-
cause it was optimized for a bunch spacing of 30 buckets.

If the multi-bunch beam break-up is small, the multi-
bunch emittance dilutions are also usually small when com-
pared to the single bunch emittance dilutions. Assuming
the tolerances described in the previous section, we find
that this is true for both the 1 and 5 TeV cases; as listed in
Table 3, the dilutions with a full bunch train are very similar
to the single bunch dilutions.

5 JITTER AND STABILITY

One of the big liabilities in a large linear collider is the
sensitivity to vibration and drifts. We can separate the mo-
tion into three regimes: motion due to ground waves which
tends to be highly correlated, high-frequency motion which
is essentially random from magnet-to-magnet (jitter), and
slow drifts where the elements perform random-walk type
movements.
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5.1 Correlated Ground Motion

At low frequencies (f <∼10 Hz), where the wavelength is
long compared to the betatron wavelength, the correlated
ground motion has little effect on the beam; the beam sim-
ply follows the ground contour. In addition, the trajectory
feedback systems further reduce the sensitivity to the low
frequency motion. Calculations, based on measurements at
SLAC[8], show that, in the worst case, the induced beam
motion would be less than 5% of the beam size.

5.2 Jitter

The jitter tolerance, to limit the beam motion to 25% of the
beam size due to uncorrelated magnet vibration, is 4.5 nm
in the 1 TeV design and 1.2 nm in the 5 TeV design; the
reduction is primarily due to the smaller beam sizes in the
higher energy case. This imposes tight, although not un-
reasonable, tolerances on the man-made or ‘cultural’ vibra-
tion; measurements at the ALS in Berkeley and the FFTB
at SLAC have observed roughly 1 nm difference between
quiet conditions where the magnet motion is simply due
to ground motion and noisy conditions where all systems
where operational. If necessary, additional stabilization
could be provided by using either active or passive damp-
ing.

5.3 Drifts

Slow drifts of the accelerator components are frequently
described with the ‘ATL’ relation[13] which assumes that
the magnet positions along the linac perform a random
walk in both time and separation. In this case, the expected
difference in transverse position between any two locations
will vary as〈∆y2〉 = A?T ?L whereT is the time between
successive measurements,L is the distance separating the
two locations, andA is a coefficient that depends on the
geological conditions of the surrounding environment. For
our calculations, we use a coefficient A=5×10−7 µ2/s/m.
This is larger than values measured in the FFTB tunnel at
Stanford Linear Accelerator[14] but is smaller than mea-
surements at some other laboratories.

In the 1 TeV case, the emittance dilution increases by
roughly 50% after 30 minutes which is similar (50% faster)
to the NLC design. The dilution increases roughly 3 times
faster in the 5 TeV case as is illustrated in Fig. 3. This sug-
gests that, in the 5 TeV case, the beam trajectory should
be re-steered (using 1-to-1 correction) every 5 minutes to
constrain the time-averaged dilution to roughly 15%. Al-
ternately, a similar correction procedure could be imple-
mented as a slow steering feedback loop. In either case,
there should be minimal luminosity impact.
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Figure 3:Simulation of emittance growth versus distance in the
5 TeV linac due to ATL motion after 10 minutes with coefficient
A = 5 × 10−7; the simulation includes seven feedback stations
that constrain the beam trajectory along the length of the linac
and the results are the average of 40 different seeds with error
bars denoting the variation.
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