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Abstract

The work is devoted to analytical study of application of
integrable systems to round colliding beams, aiming at en-
hancement of the beam-beam limit. Two examples of “inte-
grable” beam-beam forces are presented, relevant to round
counter beams with special density distributions. In such
systems all the resonances will vanish, hence the beam-
beam effects can be suppressed, and the intensities of col-
liding beams may be strongly increased, at least in the
“weak-strong” case.

1 INTRODUCTION

The concept of “Round Colliding Beams” (RCB) is con-
sidered as a possibility to reach higher luminosity and
to improve beam stability in colliders ([1] and references
therein). The essential conditions of the RCB are: equal
horizontal and vertical emittancesεx = εy = ε; equal hor-
izontal and vertical beta-functions at the Interaction Point
(IP) β∗

x = β∗
y = β∗; equal horizontal and vertical tunes

νx = νy = ν. The rotational symmetry of the kick from the
round opposite beam, complemented with theX −Y sym-
metry of the betatron transfer matrix between the collisions,
result in an additional integral of motionM = xy′ − yx′,
i.e. the longitudinal component of particle’s angular mo-
mentum.

Thus, the transverse motion becomes equivalent to a
one-dimensional (1D) motion [2]. Resulting elimination of
all betatron coupling resonances is of crucial importance,
since they are believed to cause the beam lifetime degra-
dation and blow-up. Reduction to 1D motion makes im-
possible the diffusion through invariant circles. Although
this 1D motion has more “regularity” in comparison with a
general 2D motion, with the time-dependent Hamiltonian
it is still stochastic in general. What we need here to make
the motion regular, isto construct one more integral of mo-
tion, valid for any value of the angular momentumM. At
first glance, it is not evident, that we can find the needed
forces (among those physically feasible), especially when
we deal with the fields of the counter beam. But solutions
exist [3], and we present two interesting examples, which
may be already useful for practice.

2 EXAMPLE 1: INTEGRABLE BEAM-BEAM
KICK

Let us take a drift space with the unity length (for sim-
plicity) followed by an axially symmetric thin lens, as a
representation of the angular-momentum-preserving linear
optics in between the IPs, and the radial beam-beam kick.

The 2D map for particle trajectory displacementsx, y and
slopesx′, y′ through such a period is:

x = x+ x′

y = y + y′

x′ = x′ + kx (1)

y′ = y′ + ky,

wherekx =
x

r
k(r), ky =

y

r
k(r), andr =

√
x2 + y2.

Due to conservation of the angular momentum, the motion
is reducible to 1D. Previously we reported on existence of
invariants of this map in the particular case of 1D motion
([4] and referencs therein). This corresponds in (1) tox =
x′ = 0, or y = y′ = 0, or generally, to any meridianal
trajectory withM = xy′−yx′ = 0. With x, x′ lying in the
plane of such a trajectory, the desired integrals of motion
may be sought among these invariants:

I(x, x′) = (a2x
2 + a1x+ a0)(x′ + x)2

+(a1x
2 + b1x+ b0)(x′ + x) + a0x

2 + b0x , (2)

and the kick functionk must have the form:

k(x) = −2x− a1x
2 + b1x+ b0

a2x2 + a1x+ a0
. (3)

Here the 5 coefficients are arbitrary parameters of the
kick force.

Turning back to the general caseM = M 6= 0, we
can use the generic form of 1D invariant (2) for construc-
tion of an axially symmetric invariant involving onlyr, r′

as dynamic variables. The kick function (3) is now un-
derstood as a radial kickk(r), and we observe that only
the caseb0 = a1 = 0 is practically interesting, otherwise
k(r) would have singularities atr = 0. The Courant–
Snyder terms witha0, b1 in (2) give a clue to the form of
the axially-symmetric invariant, to be tried for any valueM
of the angular momentumM = xy′ − yx′ (certainly valid
atM = 0):

IM(r, r′) = (a2r
2 + a1r + a0)

(
(r′ + r)2 +

M2

r2

)
(4)

+(a1r
2 + b1r + b0)(r′ + r) + a0r

2 + b0r.

The variables here are changed tor, r′, use has been
made of the following relations:r′ = (xx′ + yy′)/r,
x′2 + y′2 =

(
(rr′)2 + (xy′ − yx′)2

)
/r2 = r′2 +M2/r2.

Rewriting accordingly the map (1) in terms of(r, r′):

r =
√
r2 + 2rr′ + r′2 +M2/r2, (5)

r′ =
(
r′(r′ + r) +

M2

r2

)1
r

+ k(r),

17590-7803-4376-X/98/$10.00  1998 IEEE



we apply this transformation to (4). The invariance relation
IM (r, r′) = IM (r, r′) then yields:a1 = b0 = 0. Thus
we find the desired integral of motion which holds at any
constant valueM of M:

IM (r, r′) = (a2r
2 + a0)(r′ + r)2 + b1r(r′ + r)

+a0

(
r2 +

M2

r2

)
. (6)

The corresponding radial kick function

k(r) = −2r− b1r

a0 + a2r2
. (7)

has only 3 free parameters, just in accord with our assump-
tion that the integrable systems for RCB form a subset of
all 1D integrable systems.

In the present context we interpret the 2nd term in (7) as
the beam-beam kick, while the 1st term together with the
drift length form the linear optics in between the IPs. The
optics appears to be a 90◦ lattice in bothX andY planes,
with the matrix of the period:

Tx = Ty =
(

1 0
−2 1

)(
1 1
0 1

)
=

(
0 1

−1 0

)
(8)

In order to return to the physical units in the result one
should replace1 to β∗, and−1 to −1/β∗.

Relevance of the solution to the beam-beam kick force
from a short (relativistic!) opposite bunch (practically, with
the length� β∗), can be seen from the conformity of both
r → 0 and r → ∞ limits of the fraction in (7) to the
realistic beam-beam kick behaviour. We may puta0 = 1,
a2 > 0, relatea−1/2

2 to the radial beam size∆, and express
b1 via the beam-beam parameterξ: b1 = 4πξ. Specifically,
the transverse density distribution in the counter bunch

dn ∝ N
2πrdr

(1 + (r/∆)2)2
(9)

exactly corresponds to the kick (7).
In practice, implementation of this solution in a RCB

scheme requires short colliding bunches with radial distri-
butions close to (9), a linear optics with equal transfer ma-
trices inx andy planes, and with equal betatron phase ad-
vances of 90◦ in between the IPs. Integrability of the result-
ing dynamics will show in regularity of motion which will
be bounded by closed invariant curvesIM(r, r′) = const,
and free from resonance islands throughout the linear sta-
bility range,i.e. for the beam-beam parameter|ξ| < 1/2π.

3 EXAMPLE 2: A SPECIAL LONGITUDINAL
DISTRIBUTION

In the previous example we dealt with a short nonlinear
kick, the time dependence was represented by the delta-
function. Now we turn to a continuous-time dependence of
the nonlinear force, and present a dynamical system with
two invariants, which can be derived by means of usual

accelerator theory tools. Let us take the 1D equation of
particle’s motion in an accelerator:

x′′ + g(s)x = F (x, s), (10)

whereg(s) is the focusing function andF (x, s) is an arbi-
trary force. This equation can be simplified by using the
betatron phaseψ =

∫
ds/β(s) instead ofs and chang-

ing the physical variablex to the normalized variableX =
x/

√
β(s):

X ′′ +X = β3/2F (X
√
β, s(ψ)). (11)

The force due to round counter beam with the transverse
Gaussian distribution can be presented now in the factor-
ized form, thus separating its dependence on the transverse
and longitudinal coordinates:

Frb = −2Ne2

γmc2
1 − exp(−r2/2βε)

r/
√
β

f(δ − 2s)√
β

, (12)

Hereε is the emittance of the opposite beam,f is the
longitudinal distribution of counter beam (

∫
fdδ = 1), δ

is the longitudinal position of the test particle in the weak
bunch with respect to the bunch center. The “time”s = 0
corresponds to the moment when the central test particle
(δ = 0) meets the center of the strong bunch.

The equation of particle motion in the interaction region
in terms ofr =

√
x2 + y2 is:

r′′ + g(s)r = Frb +M2/r3, (13)

where the last term means the “centrifugal” force.
Now let us consider a case when the weak bunch of the

test particles is short with respect to the beta function at
the IP and we can putδ = 0, and at the same moment,
the longitudinal charge distribution of the strong bunch is
proportional to the inverseβ-function: f(2s) = C/β(s).
For an interaction region which is free of focusing we have:
β(s) = β∗ + s2/β∗, and the perfect distribution is:

f(s) =
C

1 + (s/2β∗)2
, (14)

whereC is a constant,β∗ is theβ-function value at the IP.
After substitution of the normalized variableR =

r/
√
β(s) and replacement ofs by the phaseψ, one gets:

R′′ +R =
M2

R3
− C

2Ne2

γmc2
1 − exp(−R2/2ε)

R
. (15)

One can see, that the force in this equation does not de-
pend on time, and therefore, this 1D equation is integrable.
The coordinate dependence on time can be found using
conventional 1D formulas.

The trick with obtaining the time-independent force is
related with the fact, that the ’centrifugal’ force is invariant
under substitution of new variables and changing ’time’ to
the betatron phase. It is easy to see, that the force in (15)
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has one zero for a counter beam with opposite sign of elec-
tric charge.

If one wants to realize this strategy in practice, then one
has to create the longitudinal distribution in the form of
Eq.(14) over a wide range ofs, and to make it zero outside.
Next step is to make a linear transformation with the phase
advance of2πm, m is an integer1, to the next interaction
region. Having reversed the sign ofβ-function derivative,
we enter again in the interaction region and see the same
counter beam with the same distribution (and so on peri-
odically), we have a system with the needed equation of
motion.

Of course, it is difficult to create a longitudinal distribu-
tion in accurate approximation to the perfect bunch shape
over entire length of the strong bunch, including its tails.
But apparently, small deviations of the distribution from the
inverseβ-function for s � β∗, will cause negligible per-
turbation. Approximation of the perfect longitudinal dis-
tribution (14) at smalls by a Gaussianexp(−s2/2σ2) ≈
1 − s2/2σ2, leads to a recipe for an optimum length of a
longitudinally-Gaussian strong bunch:σ =

√
2β∗.

One can see, that the Gaussian shape of the betatron dis-
tribution is not important here; the distribution may be any
smooth function ofr, s, provided that its dependence onR
ands can be factorized.

Another essential feature of this solution is that the work-
ing point of this system is near the half-integer resonance,
when the number of interaction points is odd, and near the
integer resonance, when this number is even. So, pertur-
bations of the arcs of collider determine the permissible
distance of the working point from the resonance, and con-
sequently, determine the accuracy of the conservation of
integrals (this situation is common for integrable systems:
perturbations almost always lead to small stochasticity in
nearly integrable systems, the point is in allowable values
of perturbations).

One more remark is needed. The weak bunch has a small
longitudinal size in our dynamical system (while the lon-
gitudinal distribution of the strong bunch is taken propor-
tional to the inverseβ-function). If its length is not small
in comparison with theβ-function, then the force becomes
time-dependent for particles with large energy off-sets and
deviationsδ even in the normalized variables. Importance
of this modulation was checked by simulation [5].

A formal construction of the integrable distribution for
the above example can be found in [3].

4 CONCLUSION

The paper presents new ways to improve single particle sta-
bility in colliders. The essence of these ways is obtaining
integrability of the particles’ dynamics with proving addi-
tional integrals of the particle motion. For example, if the
“round colliding beams” conditions are fulfilled then the

1Actually, the bothx andy phase advances ofπ are also acceptable.
We obtain the same motion forr, r′ due to symmetry of potential of this
motion. In this case we always stay near the integer resonance.

longitudinal component of the angular momentum is the
invariant for colliding beams. In some particular cases of
the RCBs, additionally to the angular momentumM, we
can find one more invariant which is quadratic in momen-
tum, and holds for any value ofM. These two integrals of
motion suffice for a non-autonomous 2D dynamical system
to be integrable.

The both RCB examples above deal with what is called
a “weak-strong” beam-beam model: study of motion of a
test particle affected by a strong nonlinear fields of a strong
counter beam. In the both recipes the arc lattice in between
the IPs must be perfectly linear. The 1st example with a
short counter bunch requires a special transverse distribu-
tion in the strong bunch for integrability. In the 2nd exam-
ple, the strong bunch length is of the order ofβ∗. Here, we
can choose an “inverseβ-function” longitudinal bunch pro-
file for reduction of motion to a 1D autonomous dynamics.

The proposed integrable systems with globally regu-
lar motion and without any beam-beam blow-up threshold
have strengthened the concept of round colliding beams.
They were tested in simulations [1, 5] against perturbations
inevitably present in a real machine. The beam emittance
growth becomes mostly determined by the arc lattice non-
linearities and imperfections, so we believe that it will be
possible to achieve a higher luminosity by reducing the im-
pact of nonlinear lattice resonances.
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