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Abstract

A set of optical models for a variety of electrostatic
lenses and accelerator columns has been developed for the
computer code TRACE 3-D.  TRACE 3-D is an
envelope (matrix) code including space charge often used
to model bunched beams in magnetic transport systems
and radiofrequency (RF) accelerators when the effects of
beam current may be important.  Several new matrix
models have been developed that allow the code to be
used for modeling beam lines and accelerators with
electrostatic components.  The new models include  (1)
three einzel lenses, (2) two accelerator columns, (3) three
electrostatic deflectors (prisms), and (4) an electrostatic
quadrupole.  A prescription for setting up the initial
beam appropriate to modeling 2-D (continuous) beams
has also been developed.  The new models for (1) are
described in this paper, selected comparisons with other
calculations are presented, and a beamline application is
summarized.  

1. INTRODUCTION

TRACE 3-D uses the first-order transfer matrix (R-
matrix) formalism to compute changes to the beam
matrix (σ-matrix) [1].  However, rather than using the R-
matrix for an entire optical element, TRACE 3-D divides
each element into a series of small (longitudinal)
segments and the calculation then steps through the
beamline one segment at time.  The effective transfer
matrix may be modified in each segment.

The capability of TRACE 3-D to model
longitudinal changes in parameters within an element
allows one to include effects that are not possible with a
strictly first-order code; e. g., space charge forces
(applying impulses at each step) and permanent magnet
quadrupole fringe field effects are included in the standard
version of TRACE 3-D [1].  This "longitudinal"
capability has been used in this work to incorporate
changes in the beam energy as a function of position in
the electrostatic elements, as well as to calculate fringe
fields and retain the space charge model for all elements.

Three different electrode geometries for einzel (or
unipotential [2]) lenses have been modeled and are
illustrated in Figure 1.  All of the lenses have cylindrical
symmetry about the z axis, indicated by the dashed line
in Figure 1.  In addition, the einzel lenses are symmetric
about their mid-points, corresponding to the point z = 0.

2. OPTICS MODELING

The optics of particles near the axis of cylindrically
symmetric electrostatic elements is determined by the
axial potential distribution V(z).  The first-order electric
fields are given by

Ex (x,y,z) = + [(1/2) (∂2V(z)/∂2z)]x   , (1)

Ey (x,y,z) = + [(1/2) (∂2V(z)/∂2z)]y   , (2)
and

Ez (x,y,z) = - (∂V(z)/∂z)   . (3)
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Figure 1.  Electrode geometries for the three einzel lens models.  Different potential functions are used to
describe (a) a three-aperture lens, (b) a three-tube lens and (c) a two-aperture, center-tube lens.
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The fields given above satisfy Maxwell's equation
∇• E = 0 for any V(z).  The R-matrices describing the
first-order optics may be computed directly from these
fields.  Our method follows that given in reference [3].

2.1  R-Matrix Elements

The region over which the fields (1)-(3) act is
divided into small steps of length ∆z and two R-matrices
are computed for each step.  The first R-matrix, together
with an increase in the beam energy, computes the
effects of a uniform electric field acting over a distance of
∆z.  The non-trivial elements of this R-matrix are  

R13 = R24 = 2∆z /[1+(η-)
1/2]   , (4)

R22 = R44 = R66 = 1/(η -)
1/2   , (5)

and
R56 = ∆z /γ2   , (6)

where
η - = V(z)/V(z -∆z)   , (7)

and γ is the relativistic energy factor of the beam at z.
The second R-matrix computes the effective thin

lens for the focusing effect of the field applied as an
impulse.  The non-trivial elements of this R-matrix are  

R21 = R43 = - [η -η+ - 2η - +1]/(4η-∆z)   , (8)
where

η+ = V(z +∆z)/V(z)   . (9)

The formulas given by Equations (4)-(9) can be used
to model any electrostatic element whose potential is
given at discrete positions on the axis.  In this work,
analytic forms for the on-axis potential functions are used
for computing the R-matrix elements.

2.2  Potential Functions

The potential as a function of z for the einzel lenses
illustrated in Figure 1 may be written in terms of the
electrode potentials V1 and V2 as

V(z) = V1 + [(V2 -V1)/2] φ(z)   , (10)
where φ(z) is an even function of z, and goes to zero as z
approaches ±∞.  The function φ(z) depends only on the
geometry (electrode spacings and dimensions) of the lens.

For the three-aperture lens illustrated in Figure 1(a),
we use a potential that is a special case of the potential
for the two-aperture center-tube lens, Figure 1(c).  (That
potential is described further below.)  When the two radii
are equal, and the center tube has the zero length, the
formula for φ(z) is given by

φ(z)= (2/π)(g)-1{A}   , (11)
where
A=(z+g)tan-1[(z+g)/R]+(z-g)tan-1[(z-g)/R]-(2z)tan-1[(z)/R].

For the three-tube lens illustrated in Figure 1(b), we
use the following formula for φ(z)  

φ(z)= R (ω'g )-1ln{A/B}   , (12)
where

A =  [cosh(2ωz /R)+cosh[(ωa /R)+(ω'g /R)]]   ,(13)
and

B = [cosh(2ωz /R)+cosh[(ωa /R)-(ω'g /R)]   . (14)

The constants ω=1.31835 and ω'=1.67.  This form of
the potential is based upon a parameterization of a single
two-cylinder (acceleration) lens [4].  The potential was
obtained from the superimposition of potentials for 2
back-to-back, two-cylinder lenses, with the end electrodes
set to V1, and the adjacent electrodes set to V2 [5].  When
ω'=ω=1.318, the potential given by (12)-(14) is the
same as that used by Lu, Ben-Zvi and Cramer [3] and
other authors.  The use of ω'=1.67 provides better
agreement with numerical solutions to Laplace's equation
for certain cases [4].

For the two-aperture center-tube lens illustrated in
Figure 1(c), we use a potential given by El-Kareh and El-
Kareh; see Equation (6.5) of reference [2].  Specifically,

φ(z)= (2/π)(g)-1{A-B}   , (15)
where

A = (z+g+a/2)tan-1[(z+g+a/2)/R1]
   + (z-g -a/2)tan-1[(z-g -a/2)/R2] + 2R1   , (16)

and
B = (z+a/2)tan-1[(z+a/2)/R1]

+ (z -a/2)tan-1[(z -a/2)/R2] + 2R2   . (17)

When R1 = R2 = R and a = 0, these results reduce to that
given by Equation (11) above.

The fields are modeled to a distance d f before and
after each lens, so that the full length of a lens is
2(g+df)+a.  In the calculations described here, the value
of d f = fR  (or fR1), where f is the TRACE 3-D fringe
field extension factor, PQEXT [1].

3. COMPARISONS WITH OTHER WORK

Several calculations have been carried out using the
einzel models described above for comparison to other
results available in the literature.  Table 1 gives the focal
length f obtained from TRACE 3-D for the 3-tube lens,
together with results from numerical calculations by
Adams and Read [5], all expressed as the ratio f /(2R).

Table 1. Focal length to aperture ratio for 3-tube einzel
lenses.  Results for two fringe field factors f are given.

                                                                                                                                                                                                                                                                                                                    

V2 /V1  f /(2R)=-1/[2R R21] [this work] f /(2R) [5]
f=2.5 f=10.0

                                                                                                                                                                                                                                                                                                                                                                                                                                 

-0.5 0.632 0.629 0.628
0.0 2.832 2.842 2.843
0.8 131.524 141.267 141.752
2.0 11.462 11.169 11.261
9.0 1.288 1.301 1.312
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4. BEAMLINE DIAGNOSTIC APPLICATION

The three–tube einzel lens model described above
has been used in developing a diagnostic model of the
low–energy injection system for the Center for
Accelerator Mass Spectrometry (CAMS) at the Lawrence
Livermore National Laboratory (LLNL).  Figure 2
illustrates a TRACE 3-D simulation of the injection
beamline.  In the first step of the model development,
iterative adjustment of the TRACE 3-D source emittance
and voltage on the second einzel lens of the zoom–lens
section (element 6 in Figure 2) resulted in a simulation
of the beamline that was consistent with measured beam
profiles at the equivalent of positions 4/5 and 7/8 in
Figure 2 (the first einzel lens was turned off for this test).

The second einzel lens voltage required in the model
to produce a beam waist at position 7/8 was 27.4 kV.
This value is within 1.5% of the measured 27.8 kV
required in the laboratory.  Given the uncertainties in the
DAC/ADC conversion factors, the difference between the
two values is not significant.  Since the superposition
derivation of Equation (12) is valid for g /a≤1/3 and a /2R
≥1/2, and the physical dimensions of the second einzel
lens are such that a /2R = 1.1 and g /a = 0.1, this level of
agreement was expected.

In the second step of this development, a full model
of the injection system has been constructed.  This model
has been used in understanding and optimizing the
transport of various ions through the low–energy
injection system and into the CAMS accelerator.

                                                                                                                       |                                                                                                                         

Figure 2.  TRACE 3-D output for the zoom–lens section of the modeled low–energy injection line.  
This figure shows the results obtained after adjustment of the source emittance and second einzel lens
voltage to match the measured beam profiles at the equivalent of positions 4/5 and 7/8.

5. SUMMARY

Several optical elements for electrostatic accelerator
devices have been developed.  The elements have been
integrated into a version of the TRACE 3-D code that
works within the Shell for Particle Accelerator Related
Codes (S.P.A.R.C.) software environment [6].  A
detailed summary of the einzel models used for the code
has been presented.  Focal length calculations show good
agreement with other results from the literature.  The
utility and accuracy of the einzel lens models has been
demonstrated in the development of a diagnostic model of
the low–energy injection line at the LLNL Center for
Accelerator Mass Spectrometry.  Details for other
elements will be published in future papers.
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