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Abstract

In contrast with light optics, high-energy particle optics
has no rotational symmetry and its analytical treatment
becomes rapidly intractable by hand. One way to improve
the situation is to parametrize specific modules with the
help of a symbolic program. The code BeamOptics, with
its full symbolic, numerical and graphical functions is a
tool for lattice analysis and design and it is applied to
specific optical modules.

1  INTRODUCTION

Optics has been for centuries a fully analytic science.
This is true for light and charged-particle optics as long as
the focusing elements have a rotational symmetry.
Magnetic alternating-gradient structures opened new
realms in optics, but at the expense of a loss of analytic
description for most devices with the exception of the
FODO cell and its variants. The reason for this increased
complexity lies in the special symmetries of the magnetic
fields, in the fact that focusing in one plane means de-
focusing in the other plane and that overall focusing is
obtained with at least two elements. Moreover, classical
optics deals with ray tracing whilst particle optics is better
described by the beam envelope than by individual rays.
To cope with this situation, a number of numerical codes
with internal optimization procedures have been written.
However, as stated by K. Brown in his introduction to
TRANSPORT [1], they are “superb at solving the
mathematics of the problem but not the physics”.
The alternative proposed with BeamOptics consists of
restoring the analytic description by using symbolic
computing which has been invented precisely to do by
computer the calculations that are intractable by hand. It
would be naive to think that symbolic computing is a
universal panacea. Limitations may appear in the
management of the memory space, in the computing time
and in the interpretation of the output. It is nevertheless
useful to study modules for which the number of
variables is equal to the number of constraints. The
problem is then deterministic and amenable to exact
solutions. BeamOptics has all the functions to determine
the geometry of a transfer line or of a circular machine, to
trace a trajectory, the orbit dispersion, the variation of the
path length with momentum, the b-function and the
betatron phase advance. It has also a library of modules
that can be used for regular periods, orbit manipulation
and betatron matching. It is this aspect which will be

developed and the examples of isochronous periods and
of a matching triplet are thoroughly treated.

2  REGULAR PERIODS

For both technical and economical reasons, a machine
must be as regular as possible. In addition to the classical
types of cells, BeamOptics contains codes for quasi-
isochronous periods whose theory and functionalities are
presented.

2.1 Classical periods

FODO and triplet cells are fully described in BeamOptics
using the thin lens approximation. Thin elements can be
transformed into long ones but the properties of the cells
are slightly changed due to effects like the edge focusing
of the dipoles. A real beam line l derived from a thin lens
model can be converted into a period by using the
function Period[l] . If a line has a mirror symmetry,
the calculations are simplified in the function
HalfPeriod  which assumes that the longitudinal
derivatives of the b-function and of the orbit dispersion
are zero at the ends.

2.2  Quasi-isochronous period

When particles of different momenta rotate at the same
revolution frequency, the machine is said to be
isochronous. This regime may be necessary when
transition is to be avoided or when the bunch length has
to be small. It can only occur if the orbit length decreases
with momentum since the velocity always increases with
momentum. The ratio ap of the relative change of orbit
length DL/L to the relative momentum error Dp/p is the
momentum compaction and it is related to the orbit
dispersion D and to the radius of curvature r of the
central orbit by the expression
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The orbit dispersion observed at a point of curvilinear
abscissa s is given as a function of the b-function and of
the betatron phase advance m by
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The variable t is the abscissa along the orbit in the
dipoles. The sign of the dispersion changes abruptly when
the tune Q traverses an integer value. It is therefore in the
vicinity of an integer tune that D and ap can be negative.
The problem is to find a structure which can be tuned

13620-7803-4376-X/98/$10.00  1998 IEEE



near an integer. In a regular FODO cell, this is impossible
unless an irregularity, like missing magnets, is introduced
in the bending magnet distribution. The tune of the period
made of n cells of betatron phase advance m0 is close to
the integer

h n=
m

p

0

2
.

In this type of period, the de-coupling is complete
between the focusing and the dispersion (Figure 1). The
position of the missing magnets is determined by such
considerations as the maximum orbit dispersion and the
space to be reserved to kicker and septum magnets.
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Figure: 1 Horizontal (red) and vertical (blue) b-functions
and orbit dispersion (green) in a 3-cell quasi-isochronous
period.

The BeamOptics function for a quasi-isochronous period
is simply IsoPeriod[n,options ] where n is the
number of cells. In the absence of optional arguments, the
beam line is tuned at the zero momentum compaction
near the resonance closest to p/2 with two missing
magnets about p/2 apart. In addition to the beam line and
its characteristic functions, the function returns  the range
of integer resonances and the symbolic expressions of the
input orbit dispersion and of the path length as functions
of the phase advance per cell. Using the symbolic output,
the period can be studied for a wide range of phase
advances per cell (Figure 2).
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Figure: 2 Variations of the incremental path length (red)
and input orbit dispersion (green) in a missing magnet 3-
cell period with the phase advance per cell.

Optional arguments are related to the scaling parameters:
cell length and deflection per magnet, to the position of
the missing magnets and to the choice of the resonance.
The negative dispersion lattices have a few other
peculiarities. The change in length of the off-momentum
orbits can be perceived only if the orbit dispersion is
plotted about the curved reference orbit, this facility
exists only in BeamOptics and is provided by the function
AbsoluteBeamPlot . The calculation of the
instantaneous time constants of the beam blow-up due to
intra-beam scattering is often simplified by averaging the
variations of the orbit dispersion. This is clearly not
justified when the momentum compaction is close to
zero. The IBS  function of BeamOptics returns the time
constants in the horizontal, vertical and longitudinal
phase planes as the result of a numerical integration of the
various integrals without any approximation. The
computing time is rather long but the results can serve as
a reference for faster but approximate methods.

3 INSERTIONS

In large machines and especially in colliders, long
straight sections, the insertions, are dedicated to injection,
extraction, RF cavities and experimental areas. They are
usually matched to the arcs in two steps, first by
canceling the orbit dispersion and its longitudinal
derivative using a dispersion suppressor and then by
achieving the required beam shape. Orbit dispersion and
betatron motion are thus de-coupled.

3.1 Dispersion suppressor

There is a great variety of dispersion suppressors; some
act on the focusing, others on the bending structure. In
any circumstance, a linear system of two equations with
two unknowns x and y  has to be solved:

D x y
d
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D x y( , ) ( , )= =0 0 ,

the orbit dispersion and its derivative being taken at the
end of the suppressor. The BeamOptics function is
DSuppressor[l, DVector[D,D’],{x,y}]
where l is a symbolic beam line and some of whose
elements are functions of x or y and D and D’  are the
components of the input dispersion vector.

3.2  Betatron matching

Betatron matching is the most difficult problem in lattice
design because it is basically non linear. It consists of
finding a 4-parameter module which maps input to output
horizontal and vertical phase plane ellipses. There is no
substantial loss of generality in assuming that the
boundary conditions are not arbitrary but of  type I or II:
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In this spirit, telescopes [2,3,4,5], single lens and doublet
matching devices [6,7], quarter and half wavelength
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transformers [2,6] have been developed. Research is
being pursued and, as an example, the properties of a
symmetric triplet (Figure 3) will be discussed. Can indeed
the general b- matching problem be solved using the two
focal lengths f1 and f2 of the quadrupoles and the distances
l and d as unknowns? The theory of this module [8]
shows that the solutions, when they exist, are given by a
cubic equation. The BeamOptics function:

MatchingTriplet[ sh1, sh2, sv1, sv2]  ,
where s denotes the function Sigma[ b,a],  solves this
equation and returns the beam line and its properties.
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Figure: 3 Symmetric triplet as a matching device.

A graphical output (Figure 4) is shown for the special
values:
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Figure: 4 Matching solutions using a symmetric triplet.

The type of solution strongly depends on the length l. It
has also to be noted that l is a scaling parameter and each
type of solution can  generate a family of solutions by
varying l at the cost of changing the b values at point 2.
This may nevertheless be acceptable if there is enough
room to add a quarter-wavelength transformer to achieve
the required boundary conditions.
This problem also reveals the special case

f f f1 2= - = .

The device may then be an interesting alternative to a
doublet for the final focus of a round beam. With the
extra-notations
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and it is sufficient to specify the b-value at point 1 and
the sh value at point 2 in the MatchingTriplet
function. Figure 5 shows the graphics output of

MatchingTriplet[1, Sigma[10,-1]]
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Figure: 5 Special matching solution using a symmetric
triplet with equal focal lengths.

5 CONCLUSION

The program BeamOptics is a tool of analysis and design
of accelerator lattices made of bending magnets and
quadrupoles. It can generate the analytic expressions that
describe an optical module and contains a library of fully
documented and easy to use functions. Last, due to the
functional style which avoids the risk of interference
between existing and new functions, the program can be
upgraded at will by the user to address a specific
problem.
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