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Abstract

Equipartitioning and certain aspects of halo formation in
high-current linac beams are explained in terms of col-
lective multipole oscillations in x-y geometry. For strong
space charge tune depression and anisotropy (emittance
and/or focusing strength) some eigenmodes can - in prin-
ciple - become unstable leading to emittance exchange. It
is shown that for parameters of practical interest in linac
design beams can be un-equipartitioned without risk of in-
stability. The effect of (stable) mismatch core oscillations
on the halo is briefly discussed.

1 INTRODUCTION

Anisotropy in conjunction with space charge effects has its
most important potential application in high-current linear
accelerators for protons or ions (spallation neutron sources,
radioactive waste transmutation linacs, heavy ion fusion
linacs etc.). In such linac bunches one of the crucial beam
dynamics issues is to what extent deviations from “equipar-
titioning” can be tolerated without risk of emittance growth
(for more recent discussions see Refs. [1, 2].

Coupling resonances leading to amplitude exchange are
a familiar subject in circular accelerators, where they are
driven by deviations from ideal focusing. It will be shown
here that beam self-fields in the space-charge-dominated
regime can play a similar role in an ideal linear lattice: in
the presence of internal energy anisotropy between differ-
ent degrees of freedom initially small space charge cou-
pling terms can grow exponentially due to collective insta-
bility. Although our theory is derived for cylindrical x-y
geometry we assume that the basic arguments also hold for
all three degrees of freedom in a bunched beam.

Our analysis contains as a special case the KV-
“breathing” (“fourth-order”) mode of round isotropic
beams in constant focusing, which has recently been sug-
gested as a driving mechanism for halo [3]. This isotropic
“breathing” mode is, however, known to vanish if the KV
δ-function distribution is slightly broadened [4]. We as-
sume that anisotropy as a driving mechanism is much more
robust with respect to the detailed form of the distribu-
tion function. While results for the isotropic case can be
expressed in terms of one dimensionless parameter,ν/ν0,
anisotropy requires two further dimensionless parameters.

2 ANALYTICAL MODEL

Basic assumptions of the model are summarized in the fol-
lowing, whereas details of the analytical theory are pre-
sented elsewhere [5] (see also Ref. [6] for an earlier refer-
ence to certain aspects of this work). The unperturbed equi-
librium beam is assumed to have uniform density within an

elliptic cross section defined by
(

x
a

)2 +
(

y
b

)2 ≤ 1, with
a, b the semi-axis of the boundary ellipse. Assuming lin-
ear and time-independent external focusing forces for the
equilibrium beam (”smooth approximation”) we can write
separate Hamiltonians for thex- andy- motion:

H0x = (p2
x + m2γ2ν2

xx2)/(2mγ)
H0y = (p2

y + m2γ2ν2
yy2)/(2mγ) (1)

and define a generalized anisotropic Kapchinskij-
Vladimirskij distribution asδ-function of a linear combi-
nation of the two separate Hamiltonians:

f0(x, y, px, py) =
NTνy/νx

2π2mγa2
δ

(
H0x + TH0y − mγν2

x
a2

2

)

(2)

HereT is the ratio of oscillation energies in thex and
y directions which can be readily written for harmonic os-
cillators asT = (a2ν2

x)/(b2ν2
y). The ratio of emittances is

given byεx/εy = (a2νx)/(b2νy). The time-independentf0

in Eq. 2 is a solution of Vlasov’s equation sinceH0x, H0y

are constants of the motion. For the perturbed distribution
functionf ≡ f0(H0x,H0y)+f1(x, y, px, py)e−iωt we lin-
earize Vlasov’s equation keeping only first order terms in
f1 and in the perturbed electrostatic potentialΦ, which is
expanded as polynomial in x, y in the interior of the beam.
The orderl of this polynomial is related to the spatial pro-
file of the density perturbation as is shown in Fig. 1. It is
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Figure 1: Beam cross sections for second , third and fourth
order even and odd modes (schematic).

noted that the even modes are symmetric with respect to
the horizontal (herex−) axis. The odd modes lack this
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symmetry; in 3-d these modes correspond to a lack of ro-
tational symmetry around the longitudinal axis, hence they
are suppressed inr − z simulation codes.

The assumption of vanishing perturbed potential at infin-
ity leads to a dispersion relation for the coherent frequency
ω in the form of an algebraic expression depending on the
three variables to describe the equilibrium beam. For this
purpose we useνy/νy0, α ≡ νy/νx andη ≡ a/b (≥ 1)
and characterize the eigenfrequency by the dimensionless
coherent frequencyω/νy0. The energy anisotropy is then
given byη2/α2 and the ratio of emittances byη2/α.

3 EIGENFREQUENCIES

Starting with second order modes the simplest modes are
the well-known envelope oscillations. In addition, our anal-
ysis yields odd (“tilting”) modes (see also Ref. [7] where
a matrix formalism is used for the second order modes)
which lead to a linear coupling betweenx andy and can
become unstable for sufficiently large anisotropy. The cou-
pling is caused by the space charge force corresponding to
that of skew quadrupoles. The number of eigenfrequencies
increases considerably with orderl due to the anisotropy.
In Fig. 2 this is shown for thel = 3 odd mode and
νx/νy = 0.8, a/b = 1.94 (εx/εy = 3 andT = 2.4). It
indicates transition to an unstable solution (Imω > 0 with
Reω = 0) for νy/νy0 < 0.39 with a maximum growth
rate of about 10% of the betatron frequency; note that there
exists simultaneously a damped solution withImω < 0
not shown here. The isotropic case is completely stable.
We note that for the same parametersl = 4 yields already
16 different frequencies. For different values ofα, η the
thresholds for onset of instability may vary considerably.
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Figure 2: Example of frequencies for third order odd mode
with T = 2.4 anisotropy.

4 LINAC DESIGN STABILITY CHARTS

For the design of high-current linacs it is desirable to iden-
tify regions in parameter space where growth rates lead-
ing to emittance exchange might occur. For this purpose
we have created charts (see Fig. 3) which show the tune
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Figure 3: Stability charts for second, third and fourth order
modes assumingεx/εy = 3.

depressionνy/νy0 versus tune ratio for a given ratio of
emittances, and corresponding marks whenever an eigen-
frequency indicates instability. Hence, at the boundaries
of the marked regions growth rates vanish. The tempera-
ture anisotropyT is given by the product of tune ratio and
emittance ratio and can be larger or smaller than unity. In
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Fig. 3 we have assumedεx/εy = 3. We note that for dif-
ferent values of the emittance ratio (>> 1) the charts are
qualitatively similar. νx/νx0 is determined by these three
parameters: one finds that forT < 1 it is the more strongly
depressed one of the two tunes (assumingεx/εy >> 1),
and the less depressed forT >> 1. Seriously large growth
rates are found only for the non-oscillatory instabilities
with Reω = 0; for completeness we also show in Fig. 3
the oscillatory instabilities withReω > 0 (small marks)).
We find that forT = 1 none of the modes are of concern;
for T > 1 first the odd modes grow unstable, whereas for
T < 1 only the even mode seems of concerns.

Linac Design: We suggest that the charts presented
above give a useful orientation not only for the x-y cou-
pling case but also for the longitudinal-transverse coupling
(z-y or z-x), which is of real interest in linac bunches. If
εl/εt > 1 we identify l with x andt with y in Fig. 3. We
find that there is sufficient space free of instabilities right
and left of the equipartitioning lineT = 1. ForT = 1/3 (3
times higher transverse oscillation energy), for instance, the
transverse tune depression must be below 0.6 to enter into
the unstable region of the third order even mode (and even
lower for the fourth order even mode). We find that the odd
mode instabilities come into play only forT sufficiently
larger than unity. Hence we conclude that linac beams can
be moderately “un-equipartitioned” without risk of emit-
tance transfer, even for relatively strong tune depression.

In computer simulation of infinitely long coasting beams
it was recently observed that a transverse to longitudinal
temperature equilibration occurs, presumably driven by a
similar mechanism [8].

5 COUPLING EFFECT ON HALO

While the above theory describes collective behaviour
driven by the core of the beam we also expect that excita-
tion of some of these eigenmodes causes a coupling in the
halo. It is thus appropriate to extend the core/test-particle
halo studies developped originally for round, isotropic
beams [9] to anisotropic situations.

As a first step in this direction we have examined a par-
ticular case by exciting the second order odd mode at the
level of 20% mismatch for different parameters (a/b =
1.414 fixed), where this mode is stable. We have traced
2 halo test particles with initialx = 0.9a (crosses) and
x = 1.9a (triangles) assuminga = 1.414, and set initially
px, y, py equal to zero. We have integrated their motion by
a symplectic integrator (leap-frog) in the presence of the
space charge field of the periodically oscillating core over
30 betatron periods. Fig. 4 shows the full time history of
these 2 particles. While forνy/νy0 = 0.99 we find prac-
tically no coupling into they−plane, a significant effect
occurs for stronger tune depression (νy/νy0 = 0.5) due
to the coupling space charge force, which compares with a
skew quadrupole force. For the small amplitude particle the
weakly anisotropic beam case (top, withT = 2) shows a
stronger excursion in thex-direction, whereas the strongly

anisotropic case (bottom, withT = 8) shows an enhanced
y-amplitude. The coupling does, however, not lead to a full
exchange of “temperatures”. Hence, this example demon-
strates that anisotropy in the halo is only partially removed
by the effect of the space charge force. Obviously a more
extensive exploration of the three-dimensional parameter
space is required to establish decisively to what extent mis-
match oscillations lead to equipartitioning in the halo.
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Figure 4: Halo development driven by second order odd
(tilting) mode for different anisotropy (νx/νy = 1, 2) and
tune depression.
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