
EFFECTS OF THE LANDAU CAVITY ON THE ELECTRON BEAM

L.H. Chang, Ch. Wang, W.K. Lau, C.C. Kuo
Synchrotron Radiation Research Center, Hsinchu, Taiwan

Abstract

This paper presents the procedure and the formulas to an-
alyze the effects of Landau cavity on the electron beam
while the main RF system is operated on the compensated
condition. It is shown that the maximal available current,
determined by the phase instability limit, is reduced with
Landau cavity. The model of “ potential energy ” [1] is used
for the calculations of the bunch length and the synchrotron
frequency of the storage ring with double RF system. It is
shown that the bunch length can be manipulated by tuning
the resonance frequency of the passive Landau cavity, and
the spread of synchrotron frequency can be induced by the
addition of a Landau cavity.

1 INTRODUCTION

The beam life-time is always the concern of synchrotron
radiation users. Especially for the third generation stor-
age ring , it is operated with low beam emittance and short
bunch length. The Touschek scattering is usually a limit
of the beam life-time for the low energy machine. It can
be improved either by increasing the energy acceptance or
by decreasing the charge density of a bunched beam. The
Landau cavity is one of the solutions to decrease the charge
density by increasing the bunch length.

The Landau cavity can be operated either in active mode
or in passive mode. In active mode, the gap voltage and
the RF phase are adjusted to manipulate the slop of the
accelerating voltage, which affects the bunch length. The
optimized conditions for bunch lengthening and the beam
dynamic theory were discussed by Hofmann and S. Myers
in 1980 [2]. In passive mode, the bunch length is current
dependent, and is manipulated by adjustment of the tun-
ing angle of the Landau cavity. The implementation of the
Landau cavity enhances the phase instability [3], which re-
duces the maximal available beam current. Moreover, the
RF power generated by beam current may be enough to
cause the damage of the passive Landau cavity. It is impor-
tant to estimate these effects in the design of the harmonic
Landau cavity.

2 PHASE INSTABILITY LIMIT

In a double RF system composed of a main RF system with
accelerating frequencyωRF and a nth harmonic RF system,
The total RF voltageVT seen by the electron with time dis-
placementτ can be written as

VT (τ) = VM cos(φM + ωRF τ) + VL cos(φL + nωRF τ)
(1)

where VM and φM are the total gap voltage and syn-
chronous phase of the main RF system;VL andφL are the

total gap voltage and synchronous phase of the harmonic
RF system. The accelerating voltageVT (0) is equal to
the voltage for compensating the energy loss of the syn-
chronous electron. Notice that the time displacementτ is
defined to be positive if the electron lags behind the syn-
chronous electron. In this paper, the subscriptL, M rep-
resent the quantities related to the system of the harmonic
Landau cavity and main RF system, respectively.
VM in (1) is combined with the induced voltageVb and

the generated voltageVg [4]. The relations between them
can be expressed as

VM cos(φM ) = −Vb cos(ψ) + Vg cos(φg) (2)

whereφg is the phase of generated voltage with reference
to the synchronous electron,ψ is the tuning angle of the
main RF cavity. Without beam current in cavity,ψ is equal
to the tuning angle offsetψ0, which is defined as

tan(ψ0) = 2Ql
ωr − ωRF

ωr
(3)

whereQl is the loaded quality factor,ωr is the resonance
frequency of the cavity. By this definition, the positive tun-
ing angle means that the resonance frequencyωr is higher
than the frequency of the electromagnetic field of the mode,
ωRF . Similarly, if the Landau cavity is operated in active
mode,VL can be expressed as

VL cos(φL) = −VbL cos(ψL) + VgL cos(φgL) (4)

If the Landau cavity is operated in passive mode,ψL is not
dependent on the beam current, andVL is derived only from
the induced voltage. Equation (4) needs to be modified as

VL cos(φL) = −VbL cos(ψL) (5)

whereφL = ψL. In (2), ψ is varied with the beam load-
ing effect. The variationψb is dependent on the operating
condition. For our main RF system the feedback control
always keeps the amplitude ofVM and the relative phase
betweenVM andVgr constant.Vgr is the generated volt-
age at resonance frequency. On this condition,ψb can be
obtained by the equation below [5].

ψb = − tan−1(
Vbr sin(φM − ψ0)

VM/ cos(ψ0) − tan(ψ0)Vbr sin(φM − ψ0)
)

(6)

where Vbr is the induced voltage at the resonance fre-
quency. With beam current in the cavity,ψ becomes

ψ = ψ0 + ψb (7)

The phase ofVg with reference to the synchronous electron
becomes

φg = φM + ψb (8)
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If we consider the main RF system with the couple coef-
ficient β andψ in (7) which are optimized for minimizing
the reflected RF power from the cavity, the compensated
condition [5]. And the bunch length is short enough to be
ignored, in comparison with the cavity size. With these
conditions, we can obtainVbr andVb as follows:

Vbr = 2IaRs (9)

Vb = Vbr cos(ψ) (10)

whereRs is the shunt impedance of the cavity,Ia is the av-
erage beam current.φg is decreasing with the increase of
the beam current. Asφg becomes zero, the phase is at the
stability limit [4]. In passive Landau cavity, the interaction
between the beam current and the RF field is stronger asψL

is getting close to zero. As shown in Fig. 1, the maximal
available beam current is reduced from 512 mA to 153 mA
asψL is tuned from90◦ to 0◦. From the energy conserva-
tion law, we can obtain the RF power for the cavity to keep
VM constant

PM =
V 2

M

2.0 ·Rs
+ VM · cos(φM ) · Ia (11)

The discussion above for the main RF system are still valid
with the Landau cavity operated in active mode.

For the Landau cavity operated in passive mode,VbrL is
given by

VbrL =
2IaRsL

1 + βL
(12)

and the power loading of the Landau cavity is given by

PL =
[VbrL · cos(ψL)]2

2.0 ·RsL
(13)

PL in equation (13) is dependent on the beam current and
ψL. For the case in Fig. 2,PL is obtained at the phase
instability limit. The maximalPL, atψL = 0, is beyond 50
kW.

3 BUNCH LENGTH

If we neglect the radiation damping term, the time deviation
in synchrotron oscillation can be described by the equation

d2τ

dt2
=

α

E0T0
· {e · VT (τ) − U0} (14)

whereU0 is the radiation loss of the electron with nominal
energy in one revolution,E0 is the nominal energy,T0 is
the revolution time,α is the momentum compaction. We
defineα as

dτ

dt
= α

ε

E0
(15)

whereε is the energy deviation from the nominal energy.
Eq. (14 ) is similar to the equation of motion under the
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Figure 1: The beam current at phase instability limit versus
the tuning angle of the passive Landau cavity. The ma-
chine parameters are listed as follows: nominal energy is
1.5 GeV, harmonic number of Landau cavity is 3.0, number
of main cavities is 3, energy spread is6.6×10−4, accelerat-
ing frequency is 500 MHz,Rs = 3.0MΩ,RsL = 1.2MΩ,
α = 6.78× 10−3, VT = 157kV , VM = 1200kV .
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Figure 2: The power loading of the Landau cavity with
maximal available beam current (at the phase stability
limit). The machine parameters are the same as in Fig. 1.

conservative force(d2τ/dt2). The “ potential energy ” can
be obtained by integrating the “force” [Eq. (14)].

φ(τ) = − α

E0T0

∫ τ

0

{e · VT (t) − U0}dt (16)

For the electron with peak energy deviationε̂, the maxi-
mal potential energy, which is equal to the maximal kinetic
energy[1/2(dτ/dt)2], can be obtained from Eq. (15)

φ̂ =
1
2
(α

ε̂

E0
)2 (17)

The maximal time displacement is at the point where the
potential energy is maximal.

φ(τp) = φ(τn) = φ̂ (18)

whereτp (τn) is the maximal time displacement behind
(ahead) the synchronous phase. The bunch length of the
electrons with peak energy deviationε̂ is then given by

σl(ε̂) = c · (τp − τn) (19)
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where c is the velocity of the photon. For an electron beam
with Gaussian spread in energy deviation, we may express
the normalized electron density as

n(ε̂) =

√
2
π
· εrms · exp(−ε̂2/2ε2rmx) (20)

whereεrms is the root-mean-square deviation of energy.
The root-mean-square bunch length is given by

σrms =

√∫
n(ε̂)σl(ε̂)2dε̂ (21)

For the machine with a Landau cavity operated in passive
mode,ψL is the parameter that we can use to manipulate
the bunch length.

As shown in Fig. 3, the bunch is lengthened with the
larger beam current ifψL is positive. In this case, the bunch
is lengthened more than70% with the beam current at 200
mA. But the power loading is beyond 45 kW (see Fig. 2).
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Figure 3: The bunch length versus the beam current for two
different tuning angles. The parameters are the same as in
Fig. 1.

4 SYNCHROTRON FREQUENCY

From energy conservation law, the “ velocity” (dτ/dt) is
given by

dτ

dt
=

√
2[φ̂− φ(τ)]1/2 (22)

From Eq.(22), we can obtain the time period of synchrotron
oscillation.

tν = 2.0
∫ τp

τn

1.0√
2[φ̂− φ(τ)]1/2

dτ (23)

The synchrotron frequency is obtained from the inverse of
tν

fν =
1
tν

(24)

Fig. 4 shows that the shift of synchrotron frequency, in-
troduced by the addition of a Landau cavity, is dependent
on the peak energy deviation. It results in a synchrotron
tune spread for a bunched beam, which will enhance the
Landau damping against longitudinal coupled bunch insta-
bility.
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Figure 4: The synchrotron frequency versus the peak en-
ergy deviation.Ia = 180mA, ψL = 45◦, and the other
parameters are the same as in Fig. 1.

5 DISCUSSION

The Landau cavity proposes an approach to lengthen the
bunch, and enhances the Landau damping against the lon-
gitudinal coupled bunch instability. But it also causes un-
wanted effects, such as the reduction of the available beam
current.Vb in (10) is obtained assuming that the RF system
is operated on the compensated condition. In reality, the
compensated condition can be met only at a certain beam
current. In our machine, the couple coefficient of the main
RF cavity is 1.2. It means that without beam current, the ra-
tio between the reflection power and the power loss in the
cavity is about 0.84%. With this mismatch, the error forVb

in (10) is about 1% when beam current is very small. If the
couple coefficient is getting larger, a further study is neces-
sary. Moreover in passive mode, ifRsL is large enough and
the beam current is above some threshold value, the “poten-
tial energy ” may be deformed to two valleys. In such case,
Eq.(19) is invalid for the bunch length calculation.
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