DYNAMIC APERTURE STUDY ON BEIJING au-CHARM FACTORY DESIGN

Q. Qin, Z.T. Wei, N. Huang, A.M. Xiao Institute of High Energy Physics, Chinese Academy of Sciences P.O.Box 918, Beijing 100039, China

1 INTRODUCTION

The Beijing τ -Charm Factory (BTCF) is a two-ring collider, with the beam energy of 2 GeV, including both crossing-angle and monochromator schemes. Some brief parameters of the ring are shown in table 1. The dynamic aperture behaves as a crucial role in the design of collider, especially the particle factories. The arrangement of chromaticity sextupoles, which influence the dynamic aperture mainly as considered, is illustrated in the following section. The 6-dimensional simulations were done with MAD code mainly, while SIXTRACK was also used for comparison and cross-checking. High order multipolar components for magnets were assigned in the tracking. To improve the dynamic aperture of the machine, the lattice has been made some progress, and the mono-chromator scheme has also been upgraded as well. In this paper, only the dynamic aperture simulations on the crossing-angle scheme are described.

Table 1: Main parameters of the BTCF storage ring[1]

Beam energy (GeV)	2.0
Circumference (m)	385.447
Crossing angle at IP (mrad)	5.2
β -function at IP (m/m)	0.65/0.01
Betatron tunes Q_x/Q_y	11.8/12.6
Momentum compaction	0.014
Natural chromaticity Q'_x/Q'_y	-20/-36
Natural emittance (nm)	153
Energy spread	5.84×10^{-4}
Synchrotron tune	0.068
Total current per beam (A)	0.57
Number of bunches	86
Luminosity ($cm^{-2}s^{-1}$)	1×10^{33}

2 SEXTUPOLE INSTALLATION AND LATTICE EVOLUTION

In the design of Preliminary Lattice (PL) for BTCF storage ring[1], two families of chromaticity sextupoles have been set. They are interleaved with different phase advance between the SD's and the SF's (SD stands for the defocusing sextupole, while SF the focusing one.). The phase advance of each cell in the arc is around 60° . This brings about the diminishing of the dynamic aperture of the storage ring, as shown in the following sections. To overcome the shortcoming of the lattice and increase the dynamic aperture, an Improved Lattice (IL) with different sextupoles array has been developed[2]. In the IL, we arranged the sextupoles again according to the theory of W vector proposed by B.Montague[3] and changed the phase advance of cell to exact 60° . The sextupoles are still interleaved, but with same phase advance between SD's and SF's. At last, the tunes have been changed to near 11.25 in horizontal and 12.25 in vertical. This Improved Lattice has a better dynamic aperture compared with the Preliminary Lattice, even with the effects of multipolar components of magnets.

3 ERROR ASSIGNMENT

The stable area in phase space is affected by the non-linear fields introduced by magnet imperfections or by the beambeam effect. The non-linearities are measured in terms of the high-order coefficients a_n and b_n of the complex field expansion (European convention)

$$B_y + iB_x = B_1 \sum_n (b_n + ia_n)(z/R_r)^{n-1}$$
(1)

where B_1 is the nominal vertical magnetic field, B_y and B_x are the actual components of the field in the vertical and horizontal planes, R_r is the reference radius, and z = x + iy.

In the light of the experience of BEPC and other machine, such as PEP[4], only random or rms. errors with Gaussian distribution for dipoles and normal quadrupoles are given to the simulations. Both systematic and random errors for the superconducting insertion quadrupoles near the collision point are introduced in the tracking program. Table 2 shows the expected field pertubations of dipoles and quadrupoles.

Neither field strength error, nor roll error, nor misalignment has been put into simulation because we don't install any correctors except for chromaticity sextupoles. All the three kinds of above errors could be compensated by dipolar or skew quadrupolar correctors. The parallel studies are still under way.

4 TRACKING ON DYNAMIC APERTURE

The dynamic aperture is defined as the maximum initial amplitude of particles which have to survive for suitable time in electron ring. Above a certain oscillation amplitude the particle motion becomes unstable. A large dynamic aperture is required for a reliable lattice of storage

Table 2: Field errors expected for tracking (in units of 10^{-4} at R_r =1cm)

Random errors in dipole				Random errors in quadrupole				
b1	0.000	a ₁	0.000	b1	0.000	a1	0.000	
b2	0.000	a_2	0.000	b ₂	0.000	^a 2	0.000	
b3	0.174	a ₃	0.000	b3	0.220	a3	0.000	
b4	0.008	a4	0.000	b4	0.013	a4	0.000	
b5	0.003	a5	0.000	b5	1.46E-3	a ₅	0.000	
b ₆	0.000	a ₆	0.000	b ₆	5.73E-4	a ₆	0.000	
b7	0.000	a7	0.000	b7	0.000	a7	0.000	
b8	0.000	a ₈	0.000	b ₈	0.000	a ₈	0.000	
b9	0.000	ag	0.000	bg	0.000	ag	0.000	
b10	0.000	a10	0.000	b10	9.216E-7	a10	0.000	
b11	0.000	a11	0.000	b11	0.000	a11	0.000	
b12	0.000	a12	0.000	b12	0.000	a12	0.000	
b13	0.000	a13	0.000	b13	0.000	a13	0.000	
b14	0.000	a14	0.000	b14	5.734E-10	a14	0.000	
		Field erro	rs in super	onducting	auadrupole O1			
	Systema	ic errors	15 m superc	Sincucing	Random arrar			
ho	0.000	30	0.000	ba	0.000		0.000	
bo	0.000	a2 ac	0.000	b2	2.64E-2	⁴ 2	0.000	
- ⁰ 3	0.000	"3 "	0.000	- ⁰ 3	3.04E-3	*3	0.000	
04 b-	0.000	a4	0.000	04 ba	3.04E-3	a4	0.000	
⁰ 5	0.000	⁴ 5	0.000	⁰ 5	4.01E 5	⁴ 5	0.000	
⁰ 6	0.000	^a 6	0.000	⁰ 6	4.01E-5	^a 6	0.000	
07 b-	0.000	47 0-	0.000	07 b-	4.01E-0 5.20E-7	47 0-	0.000	
08 h-	0.000	⁴ 8	0.000	- 08 h-	5.00E-7	a8	0.000	
b	0.000	ag	0.000	- UG	7.00E.0	ag	0.000	
⁰ 10	0.000	^a 10	0.000	b10	8.05E 10	^a 10	0.000	
b11	0.000	a11	0.000	011 b	0.25E-11	a11	0.000	
b12	0.000	^a 12	0.000	b12	9.25E-11	a12	0.000	
b13	0.000	a13	0.000	b13	1.22E-12	a13	0.000	
b14	0.000	"14 31 F	0.000	b14	1.41E-13	a14	0.000	
b10	-8 54F-14	"15 310	0.000	b10	0.000	"15 310	0.000	
°18	0.01011	"18	0.000	°18	0.000	"18	0.000	
		Field erro	rs in superc	conducting	quadrupole Q2			
	Systema	tic errors			Randor	n errors		
^b 2	0.000	^a 2	0.000	^b 2	0.000	^a 2	0.000	
b3	-6.20E-2	a ₃	0.000	b3	5.59E-2	a ₃	0.000	
b4	2.41E-2	a4	0.000	b4	1.32E-2	a4	0.000	
b5	1.97E-3	a5	0.000	b5	3.12E-3	a ₅	0.000	
b ₆	-3.69E-4	^a 6	0.000	^b 6	7.38E-4	a ₆	0.000	
^b 7	0.000	a7	0.000	b7	1.75E-4	a7	0.000	
b ₈	0.000	a ₈	0.000	b8	4.13E-5	a ₈	0.000	
b9	0.000	a9	0.000	bg	9.76E-6	ag	0.000	
^b 10	0.000	a10	0.000	b10	2.31E-6	^a 10	0.000	
b11	0.000	a11	0.000	b11	5.45E-7	a11	0.000	
^b 12	0.000	a12	0.000	b12	1.29E-7	^a 12	0.000	
b13	0.000	^a 13	0.000	b13	3.05E-7	^a 13	0.000	
b14	0.000	a14	0.000	b14	7.20E-8	a14	0.000	
^b 15	0.000	^a 15	0.000	b15	1.70E-9	^a 15	0.000	
b18	0.000	a18	0.000	b18	0.000	a18	0.000	

ring, not only due to efficient injection, but long lifetime under collision conditions and other reasons.

A modified thin lens model has been applied in the simulation on dynamic aperture for BTCF. In this model, each thick lens quadrupole is separated into two pieces of thin lens with a space of 2/3 length of the thick lens between two thin lenses. This makes the thin lens model approach the real machine with smaller beta-beatings and closer quadrupole strengths[5].

In BTCF, the injection takes place in the horizontal plane for both rings. To evaluate the injection aperture we launch particles at the injection point and determine the aperture in terms of transverse position coordinates measured from the central orbit. In injection, the vertical beam size is taken from the fully-coupled emittances. An aperture, including 16 rms horizontal beam sizes and 7 rms vertical beam sizes within nearly $10\sigma_e$ of the nominal injection energy, i.e., $16\sigma_x \times 7\sigma_y \times 10\sigma_e$, is required for injection.

In the colliding-beam conditions, particles are launched at the interaction point. The dynamic aperture of 10σ in both transverse planes and $10\sigma_e$ in energy deviation is taken into account. The fully-coupled emittances are also considered.

All the tracking and simulations (with or without imper-

fections) were evaluated with the code MAD[6] in 6D, and cross-checked with SIXTRACK[7]. Except for chromaticity sextupoles, no any other correctors have been installed into the linear lattice. Simulations are done for 2000 turns, which corresponds to 1/12 damping time, at several amplitudes. Chromaticities in both transverse planes are corrected to a slightly positive value.

Figure 1 and 2 depict the β functions and tunes as functions of energy deviation in the crossing-angle scheme in PL, while figure 3 and 4 show the same parameters in IL. The dynamic aperture in transverse planes with or without energy deviation and multipolar errors is plotted in figures 5 and 6 for both PL and IL lattices, while figure 7 compares the results from MAD and SIXTRACK under the same conditions of tracking. The magnetic multipolar imperfection causes the decrease of dynamic aperture, especially in the vertical plane. The results obtained from MAD and SIXTRACK could be considered similar in tracking to a certain extent. The simulation for 24000 turns, i.e., one damping time, has also been studied. The dynamic aperture only reduces reasonably 1 or 2 σ in both transverse planes.

5 CONCLUSION

The chromaticity sextupoles remain the key reason in dynamic aperture, from the changing of the sextupoles arrangement and the evolution of the lattice. The improved lattice of BTCF gives a larger dynamic aperture than the preliminary lattice. With the multipolar imperfections of magnets, the dynamic aperture decreases about 10σ in vertical plane, but still satisfies the needs of injection and collision. Compared with the results from SIXTRACK, MAD gives similar outcome in the simulation.

6 ACKNOWLEDGEMENTS

The authors are grateful to the useful discussion with Prof. L.M. Chen of IHEP. We wish to thank Dr. F. Schmidt and Dr. H. Grote for their help on the codes of simulation. Our gratitude is also to be expressed to the AP group of IHEP for strong supports.

7 REFERENCES

- 'Feasibility Study Report on Beijing Tau-Charm Factory', IHEP-BTCF Report-03, Oct. 1996.
- [2] Z.T.Wei, Master dissertation, 1997.
- [3] B.W.Montague, 'Chromatic Effects and Their First-Order Correction', CERN 87-03, 1987.
- [4] PEP-II, 'An Asymmetric B Factory Conceptual Design Report', June 1993.
- [5] Q.Qin, 'A Thin Lens Approximation of LHC Linear Lattice', CERN SL-Note/95-68 (AP), 1995.
- [6] H.Grote, F.C.Iselin, 'The MAD Program', CERN/SL/90-13 (AP), 1990.
- [7] F.Schmidt, 'SIXTRACK, Version 1.2', CERN/SL/94-56 (AP), 1994.

Figure 1: β -fuction vs energy deviation in PL

Figure 2: Tunes vs energy deviation in PL

Figure 3: β -fuction vs energy deviation in IL

Figure 4: Tunes vs energy deviation in IL

Figure 5: Dynamic aperture with errors of PL

Figure 6: Dynamic aperture with errors of IL

Figure 7: Comparison of results from MAD and SIX-TRACK