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Abstract is not done for the following reasons: firstly the nonlin-

Since about 10 years survival plots have been used to evaf coupling between longitudinal and transverse planes is

uate single—particle long—term stability. In a recent papef. all which allows the separate treatment of f[h.e. longitu-
(M. Giovannozzi et al.) this concept has been reviewe inal plane, secondly for the LHC tracking the initial con-

using a dynamic aperture (Dyn.Aper.) definition based o itions in the Iong|tud|na}l phqse space are not varied but
the average over different ratios of emittances. It has be 'r)w(Ed to one set of pessmlstlc and therefore Iarge values
shown that the survival times evaluated according to th§:d lastly the tracking effort would have to be increased

procedure decay with the inverse of the logarithm of th y anot_her factor of ten. One a.im of thi_s report is to check
number of turns in several different systems. In this pap e conjecture for the LHC version 4 which has been exten-

the validity of this conjecture is tested in the case of thé've'y studied (see Ret.[4]). Another aim is the understand-

latest LHC lattice which has been studied extensively. Ing of the relation betweeD, and the onset of chaos.
The inverse log conjecture also predicts a non—zero

Dyn.Aper. at infinite times called.,. The tracking data 2 FITTING TECHNIQUE

are analysed for LHC lattice to determine the relation bedne can rewrite Eq. 1 as follows:

tweenD,, and the onset of chaos determined through Lya-

punov exponents. Two different methods to automate the D(IV) -10g;o(N) = D -10g1o(N) + Do - b, (4)

prediction Of. the Lyapunov exponent are tested and av\a/herelogm(N) is treated as an independentvariable. Thus
compared withD .

D, denotes the slope aridl,, - b the offset of a linear func-
tion which describe® (N) - log,, (V). A linear regression
1 INTRODUCTION yields both quantities with a certain errdr. The error of

In Ref. [1] (see also Ref. [2]) it has been shownD(N) is calculated to be:

that for several dynamical systems the evolution of the 1

Dyn.Aper. D(N) as a functions of turn numbey is well A(D(N)) = A(Dso) + A(Doo - b)ﬁ (5)

described by the following equation here calledliingerse 0g10(N)

Log Conjecture It should be noted that the multiplication @ (N) with

b log,,(N) in Eq. 4 puts a stronger weight on loss boundaries
D(N) = Do, (1 + 7) . (1) atlarger turn number® where they are most relevant.
log1o(IN)

The D, can be interpreted as the Dyn.Aper. after an in- 3 CONJECTURE TEST

finite number of turns while thé appears to be a mea-

sure of the range of amplitude where particle loss will T | o Prese Space Averaged baa

take place, e.g. a value = 3 means that after 1’000 w01 Inverse Log Fit up fo 1000'000 Tums s

turns the Dyn.Aper. is still a factor of two larger than,.. e e T

For this relation to work a precondition is to average the e

5,1 38
Dyn.Aper. over the four dimensional phase space as de- < ’ gﬂ—;"z ?
scribed in Ref. [3]: saoT el
77/2 1/4 30 +
D(N) = (/ [D(x (N)]4 Sin(2a)da> > (2) * 1 2 3 4 5 6 7 8
0 log(N)

wherea is related to emittance ratig, /¢, by: Figure 1: Fits of Eq. 4 from102 to 10° and 10° as well

: - -
o = atan/erg /€1, 3) as the extrapolation ta0" turns for one realization of the
/e ( imperfect LHC
e.g. (@ = 45°) corresponds to a emittance ratio of Figyre 1 summarises the tracking data and the fitting re-

(err/er = 1). As the tracking for the LHC is usually syt for one realization of the imperfect LHC: the tracking
done in the full six dimensional phase space one could &as heen performed for 17 emittance ratios uppfoturns.
gue that an average over the six dimensionsis needed. TRi§ the emittance ratio of one(= 45°) the tracking has

. 3 S
*This research was supported in part by the National Science Foundz.peen pr0|0nged to0” turns. A ||n:'3‘ar regression fit accprd-
tion under Grant No. PHY94-07194. ing to Eq. 4 is performed up tt0® and10° turns. The fits
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are extrapolated td0” turns and quoted with their errors. 271
The data forw = 45° which deviate from the phase space s | seeds { seed 30
averaged data at small turn numbers are consistent with 3" |
both fits beyond.0® turns within their errors. Moreover, 2210-- y Seed3o
reducing the number of angles to 9 changes the predicted * 4 Seed 26
Do, by amere 1.1%. A bit worrying is the fact that the fit- of
m  Phase Space Averaged Data (1'000'000 Turns)
9 Fit using up to 100'000 Turns
=0— Sliding Fit (one Decade) of D_lInfinity ‘ 8-+
= Cumulative Fit of D_Infinity
.85 . .
2 Figure 4:Comparison of tracked and scaled Dyn.Aper.
S s
g N, AL boundary in phase space. Agreement of the two indepen-
"1 dent methods would giv®., a physical meaning at least
. in a heuristic manner. It is well known that there cannot be
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Number of Turns

a rigorous non-zero loss boundary over infinite number of
turns in a system with more than two degrees of freedom
Figure 2: D, determined from a cumulative fit and a slid-due to the loss of particles in the Arnold web (see Ref.[6]).
ing fit However tracking studies for various systems have clearly
. . . . shown that there always seems to be a hard core of stabil-
0

ted D, is increasing by 3%. Figure 2 shows that this is du'ﬁy in the amplitude space which is equivalent to a non—

to the fact that the sliding fit Ao is Increasing monoton- zeroD.,. Two models have been tested: the four dimen-
ically after a few thousand of turns, i.e. the Dyn.Aper. de-

creases less rapidly than the linear fit does imply. Applying 201
the conjecture fit to 60 machine representations (Figure 3)
reveals a small anti correlation betweBn, andb which

could mean that the linear relation of Eq. 4 is based on a
too simple assumption. On the other hand the figure also
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Figure 3:Scaled Dyn.Aper. and the conjecture fit parame- Amplitude (arbitrary units)
ters D, andb

shows that the fit constants and the Dyn.Aper. scaled froﬁ{gure §:The I-énpn model —'|'20p: Sta*i'e amplitude v<.ar-
10° to 10, using the inverse log conjecture, have small ersUs gmlttance rat'lo betwgelrﬁ) and 10° turns, Bottom:
rors. Even though the fit parameters may not have a clegrwv'vaI plot, conjecture fit and chaos boundary

physical meaning the two parameter fit may still be usesional HEnon model and the LHC case for which the con-
ful to extrapolate the Dyn.Aper. to larger turn numbers. Téecture fit is shown in Figure 1. Due to its simplicity the
check this assumption emittance ratio scans have been &kst model can be tracked for a large number of angles and
tended up td0° turns for 5 different seeds (see Figure 4)turn numbers (40 anth” respectively) while the LHC can
The fit involving data up td0° turns and the tracking data be tracked for only 17 angles and® turns. The LHC

for 106 turns agree within the error bars of the extrapolastudy has required two weeks of CPU time of a power-
tion. ful 10 processor workstation cluster [7]. Thep part of

figure 5 and 6 depict the Dyn.Aper. versus emittance ra-
4 CHAOS AND D, tio, a curve is shown for each decade of turn numbers. It
should be noted however that the tunes of the latter have
Since many years the chaotic boundary has been usedieen carefully chosen [81,=0.168,Q.=0.201) to ob-
estimate the long—term Dyn.Aper. (see Ref. [9])., de- tain a sizeable chaotic regime while for the LHC the tunes
termined from the conjecture fit should agree with the on{),=63.28,(Q.=63.31) are placed where the Dyn.Aper. is
set of chaos because both quantities describe the stabiléypected to be at its optimum value. For the phase space
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averaged Dyn.Aper. the conjecture fit agrees well with thpessimistic and very close to the,, fit. From the above
tracking data in both cases (sBettom part of Figure 5 discussion it is not surprising thél,, itself varies widely
and 6). Chaos is detected by tracing the path of two initiallgs a function of turns. As expected the distance method is
close-by particles. This method is preferred over the origsptimistic at low turn numbers. At0” turns, however, all
inal one introduced by Benettin et al. [9] as in this contexthree curves converge to almost the same point. It should be
the most sensitive measure is more relevant than the precisgted that this behavior has been reproduced at two other
knowledge of the Lyapunov exponent. Owing to the factune working points@,=0.201,Q.=0.168 andy,=0.201,
@.=0.112). For the LHC the distance and the slope method
are both optimistic. Also in this case the latter agrees quite

177

o o~ N well with D, at large turn numbers. It is clear from these
BRI o e D < dependencies that the motion of particles in the LHC case
Z u % N\/_M reveals very weak chaotic behavior over a large range of
£l amplitudes.

In both models the fit oD, appears to be pessimistic in
. . . . . . . . . an intermediate turn number regime. In fact, in all studied
o 1 2 3% 4 s e 10 8 % LHC casesD, is a too pessimistic estimate of long—term
K=atan(sqrt( €/€))) [Degree] Stablllty
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The inverse log conjecture has been thoroughly tested for
oo | ;m@:w ) the LHC version 4. Although doubts remain about the
Metod) e physical meaning oD, andb the fit can be used to ex-
trapolate the Dyn.Aper. fromh0° to 10° turns. There are
100 - - - - | | | | indications that this extrapolation can be further extended
L el to 107 turns. The chaos anB., border seem to converge
for large turn numbers for both theddén and the LHC

model.
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Figure 6: The LHC —Top: Stable amplitude versus emit-
tance ratio between0? and 10° turns, Bottom: Survival
plot, conjecture fit and chaos boundary 6 ACKNOWLEDGEMENTS
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ing data: the first method uses a threshold of the distance
in phase space which is larger than the final separation of
any two regular (initially close—by) particles at the end of
the tracking, the second method calls motion chaotic oncél] M. Giovannozzi et al., CERN LHC Project Repo#b
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method is certainly safe due to its definition. However, it
is an optimistic estimate because weakly chaotic particle _
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threshold. The slope method is less precisely defined: if6] B.V. Chirikov, Physics Reports2, pp. 263-379, (1979).
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be pessimistic because it can pick up large oscillations 0{8]
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regular oscillations of the evolution of the distance in phase

space. In the case of theeH6n model the slope method is
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