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Abstract

This paper studies the particle motion when the tune is in
the stable region close to the edge of linear sum resonance
stopband. Results are found for the tune and the beta func-
tions. Results are also found for the two solutions of the
equations of motion. The results found are shown to be
also valid for small accelerators where the large accelerator
approximation may not be used.

1 INTRODUCTION

This paper studies the motion of a particle whose tune is
near an edge of a linear sum resonance stopband. It is
assumed that the tune is not near any other linear reso-
nance, and the motion is dominated by the linear sum res-
onance. It is assumed that the linear sum resonance is be-
ing driven by a skew quadrupole field perturbation. When
the unperturbed tuneνx0, νy0 is close to the resonance line
νx + νy = q, q being an integer, the particle motion can be
unstable. Results are found for the tune and the beta func-
tions when the unperturbed tune is in the stable region but
close to an edge of the stopband. Results are also found
for the two solutions of the equations of motion. All the
results found are shown to be also valid for small accelera-
tors where the large accelerator approximation may not be
used. See [14] for more details.

2 RESULTS WHEN THE TUNE IS INSIDE THE
STOPBAND

It will be assumed that in the absence of the perturbing
fields, the tune of the particle is given byνx0, νy0, thex
andy motions are uncoupled, and that the motion is stable
whenνx0, νy0 is close to the lineνx0 + νy0 = q, whereq
is an integer. It is assumed that a perturbing field is then
added which is given by the skew quadrupole field

∆Bx = −B0a1 x

∆By = B0a1 y (2-1)

a1 is the skew quadrupole multipole anda1 = a1(s). B0 is
some standard field, usually the field in the main dipoles of
the lattice.

The coupled equations of motion can be written as

d2

dθ2
x

ηx + ν2
x0ηx = bx ηy

d2

dθ2
y

ηy + ν2
y0ηy = by ηx (2-2)

∗Work performed under the auspices of the U.S. Department of En-
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bx = −ν2
x0βx(βxβy)

1
2 a1/ρ

by = −ν2
y0βy(βxβy)

1
2 a1/ρ

One can assume thatηx has the form

ηx = As exp(iνxsθx) +
∑
r 6=s

Ar exp(iνxrθx)

νxr = νxs + n, n an integer, n 6= 0 (2-3a)

where for small enougha1, Ar � As and νxs → νx0

for a1 → 0. For the corresponding form forηy one might
assume forηy

ηy =
∑

r

Br exp(iνyrθy)

νyr = νxs + n (2-3b)

whereBr � As for small enougha1.
It will be seen below, that the solution assumed forηy

Eq. (2-3b) is valid if one is not near the sum resonance
νx + νy = q, q being an integer. Whenνx0, νy0 are close
to the sum resonanceνx + νy = q, then one of theBr

will become as large asAs and this is theBr for which
νyr = νxs − q. This is shown below. Thus, one assumes
for ηy the solution with the form

ηy = Bs exp(iνysθy) +
∑
r 6=s

Br exp(iνyrθy)

νys = νxs − q (2-3c)

νyr = νxs + n, n 6= −q

HereBr � As but Bs ' As. It is being assumed that
νx0, νy0 are not close to any other resonance other than
νx + νy = q.

Putting this assumed form forηx, ηy into the differential
equations Eq. (2-2), and assuming for the initial guess

ηx = As exp(iνxθx)
ηy = Bs exp(iνysθy) (2-4)

νys = νxs − q = −(q − νxs)

one finds that, see [14] for details,

(ν2
xs − ν2

x0)(ν
2
ys − ν2

y0) = 4νx0νy0|∆νx|2

∆νx =
1
4π

∫ L

0

ds(βxβy)
1
2 (a1/ρ) (2-5)

exp[−i(νx0θx + (q − νx0)θy)]

To solve Eq. (2-5) one puts

νxs = νxsR − igx
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whereνxsR andgx are both real, which gives the equation

(νxsR−igx−νx0)(q−νxsR +igx−νy0) = |∆νx|2 (2-6)

Eq. (2-6) then gives

g2
x + [

1
2
(q − νx0 − νy0)]2 = |∆νx|2

gx = ±
{
|∆νx|2 − [

1
2
(q − νx0 − νy0)]2

}1/2

(2-7)

Results can be found forηx andηy which are correct to
first order in the perturbation and whenνx0, νy0 is inside
the stopband or in the stable region near an edge of the
stopband.ηx, ηy are given by Eqs. (2-3). For theνx mode

ηx = As exp(iνxsθx) +
∑
r 6=s

Ar exp(iνxrθx)

ηy = Bs exp(iνysθy) +
∑
r 6=s

Br exp(iνyrθy)

νys = νxs − q (2-8)

νyr = νxs + n, n 6= −q

νxr = νxs + n, n 6= 0

Results and details forηx, ηy are given in [14].

3 THE TUNE NEAR THE EDGE OF A STOPBAND

In this section, a result will be found for the tune in the
stable region outside the stopband but close to an edge of
the stopband. It will be shown that close to an edge of the
stopband the tune of theνx mode is given by

|νx − 1
2
(νx0 + q − νy0)| = {εx|∆νx|}

1
2

εx = |q ± 2|∆νx| − νx0 − νy0| (3-1)

νx is the tune of theνx mode,ε is the distance fromνx0,
νy0 to the edge of the stopband. In the±, the+ sign is for
the upper edge, and the− sign for the lower edge. When
νx0, νy0 reaches the edge of the stopband, thenε = 0, and
νx = 1

2 (νx0 + q−νy0) is the real part of the tune inside the
stopband.

Eq. (3-1) shows that near the stopband edge,νx varies
rapidly with εx. As one reaches the edge of the stopband,

εx goes to zero anddνx/dεx becomes infinite likeε
− 1

2
x .

To find νx in the stable region outside the stopband,
where |q − νx0 − νy0| > 2|∆νx|, one goes back to the
derivation given in section 2 forνx inside the stopband,
starting with

(νx − νx0)(q − νx − νy0) = |∆νx|2 (3-2)

Because of the condition thatνx is outside the stopband or

|q − νx0 − νy0| > 2|∆νx| (3-3)

one sees that one must havegx = 0.

Let us assume that we start withνx0, νy0 below the lower
stopband edge and letνx0, νy0 approach the lower stopband
edge. The equation of the lower stopband edge is given by

q − νx0 − νy0 = 2|∆νx| (3-4)

whenνx0, νy0 arrive on the lower stopband edge, thenνx

will arrive at the valueνx = 1
2 (νx0 + q− νy0). Thus below

the stopband edge one can write

νx =
1
2
(νx0 + q − νy0) − δx (3-5)

whereδx → 0 whenνx0, νy0 arrive at the stopband edge.
We then find

νx − νx0 =
1
2
(q − νx0 − νy0) − δx

q − νx − νy0 =
1
2
(q − νx0 − νy0) + δx (3-6)

and Eq. (3-2) becomes

[
1
2
(q − νx0 − νy0)]2 − δ2

x = |∆νx|2

δx =
{

[
1
2
(q − νx0 − νy0)]2 − |∆νx|2

} 1
2

(3-7)

Eq. (3-7) givesνx in the stable region near the stopband.
It can be put in another form that indicates the dependence
on the distance fromνx0, νy0 to the stopband edge.

Below the stopband, one writes

εx = q − 2|∆νx| − νx0 − νy0 (3-8)

whereεx indicates the distance fromνx0, νy0 to the stop-
band edge which is given by Eq. (3-4). Whenνx0, νy0 is
on the stopband edge andνx0 + νy0 = q − 2|∆νx| then
εx = 0.

Using Eq. (3-8) to replaceq− νx0 − νy0 by εx + 2|∆νx|
in Eq. (3-7) one finds

δx = {εx(|∆νx| + εx/4)} 1
2 (3-9)

Eq. (3-9) can then be written so as to hold both above and
below the stopband to give

∣∣∣∣νx − 1
2
(νx0 + q − νy0)

∣∣∣∣ = {εx(|∆νx| + εx/4)} 1
2

εx = |q ± 2|∆νx| − νx0 − νy0| (3-10)

whereεx is the distance fromνx0, νy0 to the stopband edge.
One uses the+ sign for the upper stopband edge and the−
sign for the lower edge.

Close to the stopband edge, whereεx � |∆νx| then Eq.
(3-10) gives the result

∣∣∣∣νx − 1
2
(νx0 + q − νy0)

∣∣∣∣ = {εx |∆νx|}1/2 (3-11)

Equations (3-10) and (3-11) give the tune of theνx mode,
νx, near the stopband edge. The result for the tune of theνy

1428



mode,νy, may be found by making the substitutionνx →
νy, νx0 → νy0, νy0 → νx0, |∆νx| → |∆νy|.

If one varies the unperturbed tune,νx0, νy0, so that the
tune approaches the edge of the stopband, the tune on the
stopband edge depends on the value ofνx0, νy0 when the
unperturbed tune arrives at the stopband edge. The stop-
band edges are given by the two lines

νx0 + νy0 = q ± 2|∆ν|
where it is assumed that|∆νx| = |∆νy| = |∆ν| and the
+ sign is for the upper edge and the− sign for the lower
edge.

The tune of theνx mode at the stopband edge is then
given by

νx =
1
2
(νx0 + q − νy0)

νx = νx0 ± |∆ν| (3-12)

where the+ sign is for the lower edge and the− sign for
the upper edge.

The tune of theνy mode at the stopband edge is given by

νy = νy0 ± |∆ν|
One may note, that at the stopband edge

νx + νy = νx0 + νy0 ± 2|∆ν|
νx + νy = q (3-13)

and theνx, νy lies on the resonance line.
Eqs. (3-6) and (3-7) can also be rewritten as, for theνx

mode and below the resonance line,

νx = νx0 + 0.5D

{
1 − [(

2∆ν

D
)2]

1
2

}

D = q − νx0 − νy0 (3-14)

∆ν = ∆νx ' ∆νy

Results for the beta functions near the edge of the stopband
are given in [14].

4 COMMENTS ON THE RESULTS

Others have worked on this subject and there is an overlap
between the contents of this paper and their work. These
previous papers [4–13] give results for the stopband width
and for the growth rate inside the stopband.

The results in this paper include the following:

1. Results for the tune in the stable region near an edge
of the stopband. The results show that asνx0, νy0

approach the edge of the stopband, the tunes of the two
normal modesνx andνy begin to change rapidly and
whenνx0, νy0 reach the stopband edge thenνx and
νy lie on the resonance lineνx + νy = q. These final
values ofνx, νy, whenνx0, νy0 reach the stopband
edge, are approached likeε

1
2 , whereε is the distance

from νx0, νy0 to the stopband edge.

2. Results for the beta functions of the normal modes,
βx, βy, in the stable region near the edge of a stop-
band. The results show thatβx, βy do not become
infinite whenνx0, νy0 approach the stopband edge,
unlessνx0, νy0 are near the half integer resonances
vx = m/2, or vy = n/2, m andn being integers.

3. Results for the 2 solutions of the equations of motion
in the stable region near a stopband edge and in the
unstable region.

4. The above results hold also for small accelerators,
where the exact equations of motion have to be used
and the large accelerator approximation is not valid.
For small accelerators, one needs the restriction that
the perturbing field gradients do not shift the closed
orbit.
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