
DESIGNING A PORTABLE ARCHITECTURE FOR INTELLIGENT
PARTICLE ACCELERATOR CONTROL

W. Klein, C. Stern, Vista Control Systems, Inc., 134B Eastgate Dr., Los Alamos, NM 87544 and
G. Luger, E. Olsson, University of New Mexico, Albuquerque, NM 87131

Abstract

We present a portable system for intelligent control of
particle accelerators. This system is based on a
hierarchical distributed architecture. At the lowest level, a
physical access layer provides an object-oriented
abstraction of the target system. A series of intermediate
layers implement general algorithms for control,
optimization, data interpretation, and diagnosis. Decision
making and planning are organized by knowledge-based
components that utilize knowledge acquired from human
experts to appropriately direct and configure lower level
services. The general nature of the representations and
algorithms at lower levels gives this architecture a high
degree of potential portability. The knowledge-based
decision-making and planning at higher levels gives this
system an adaptive capability as well as making it readily
configurable to new environments. Significant successes
of this work are reported in [1, 2].

1 DESIGNING AN ARCHITECTURE

To be most useful, control architectures should be
flexible enough to incorporate the important tools
necessary for robust control, and should include design
features which support the application of those tools in a
timely and transparent manner. Our control architecture
attempts to meet the following six requirements:

1. The use of conventional control techniques where
appropriate. Conventional control is the best solution for
a large class of problems, and consists of established, well
developed, robust techniques for dealing with linear and
approximately linear small systems.

2. The use of high-level control knowledge from experts
in the field. More complex control systems include high-
level knowledge and information obtained through
knowledge-engineering sessions with a human expert.
This knowledge is preserved in the form of symbolic data
sets (rules, relations, objects, etc.) and is manipulated
through sophisticated, high-level reasoning mechanisms.
This knowledge-based component encodes internal
control information about how and when to use classes of
control algorithms and heuristics and for storing
configuration information for PID, neural network, fuzzy
control, etc.

3. The use of supervisory control for dealing with macro
state transitions. For instance, in beam line tuning, if a

failure in an upstream monitor forces the use of stripline
data in judging beam intensity and distribution, a
downstream controller may need to use a control
algorithm which is less precise, faster, and less sensitive
to intermittent failure or noise. Supervisory control can
also be used for control over different internal control
subsystems.

4. Support for real time reactive control. In this case,
“real time” means the ability to compute and perform
“satisfactory” or “good enough” decisions that are not
delayed due to control system response.

5. The control of complex systems through the use of a
hierarchical distributed architecture. To perform
intelligent control that optimizes behavior in complex
systems, a control architecture should support the ability
to coordinate the individual partitions of the system to
achieve an overall goal. This is especially true when
controllers operate on platforms distributed throughout a
plant. A distributed architecture requires structures for
relaying information between nodes, synchronizing
information, coordinating timing, etc. A distributed
control system may also require global access to certain
data structures including process models, diagnostic
systems, alarm systems, and hardware.

6. Portability across classes of similar control problems.
For a system to be truly portable, domain specific
algorithms should work at many facilities with limited
modification. The control system should have a working
model of the domain that allows it to accomplish similar
goals at numerous facilities with different specific
hardware designs, but similar classes of control elements.

2 PHYSICAL ACCESS LAYER

The Physical Access Layer, or PAL, is what allows the
control system access to hardware, portability, dynamic
construction of representation, filtering of data,
coordination of hardware, and conflict detection. The
PAL is permanent and static, but hierarchical structures in
the PAL can be built dynamically at run time. Learning
can occur in the PAL in various feature detectors and
pattern recognition components, as well as in recording
attributes of specific physical devices.

The Physical Access Layer provides a mechanism for
controllers and optimizers to access the physical system.
Access to hardware is supported through a single layer

24220-7803-4376-X/98/$10.00 1998 IEEE

for a number of reasons. First, the control system can be
ported to multiple systems whose hardware varies in
implementation detail but not functionality. A globally
available, uniform interface to hardware keeps controllers
and solvers from having to explicitly represent low-level
handlers and hardware handshaking mechanisms. The
PAL is one of the only shared global repositories of
information in the control system. This makes it an ideal
mechanism for conflict resolution.

The PAL also plays an important role in transforming raw
data into a representation for higher level reasoning. This
translation may be simple filtering of data, as in noise
reduction, pattern classification, and error detection or it
can be more sophisticated. In particular, the PAL is
responsible for providing initial feature detection,
fuzzification, data analysis, and discretization of
information. This is particularly important in the context
of a knowledge-based or symbolic system where raw
numeric data is often inappropriate for manipulation. For
instance, the PAL can be used to transform image data
into a set of relevant image features, e.g., background
noise, average pixel intensity, or existence of a defect.

The PAL is also useful for detecting, preventing, and
resolving resource conflicts in a distributed control
system. If an obvious resolution exists, the PAL provides
coordination instructions to the conflicting units.
Otherwise, the PAL can simply report the conflict and
allow resolution to occur within the control system itself.

A further purpose of the PAL is to support an abstract
translation mechanism between the low-level control
system interface accessible through Vsystem channels [3]
and the control architecture’s multi-representational
interface. The PAL accesses Vsystem directly through a
library of Vsystem API calls encapsulated in a channel
class library built using object-oriented programming
techniques in C++. Simple channels are represented as
objects with enhanced features including data validation,
recording and retrieving defaults, time delayed action,
equipment limit checking, and value stepping.

The PAL is designed for fast parallel operation. Each
object that can receive messages from outside the PAL is
run as a separate thread. Messages are received in a single
message handler and immediately distributed to a
message buffer associated with the recipient object.

PAL objects are not confined to representing physical
devices. They may also be used to implement abstract
devices defined as the collection and interacting behavior
of a group of other objects. Abstract objects can be used
to build control knobs that transform a single signal into a
set of signals to many devices. Tuning knobs are
sometimes used in accelerator control when the
relationship of a set of quadrupoles and their effect on the
beam at a downstream location can be determined by a
series of non-linear functions. Tuning then occurs by

manipulating a single knob to affect a single beam
parameter while maintaining other beam properties, e.g.,
magnifying the beam without increasing divergence.

3 DISTRIBUTED COMPONENT CONTROL

 Our system is based upon a distributed hierarchical
architecture designed to incorporate a wide variety of
representations, both analytical and knowledge-based,
into a single control framework. At the heart of the
architecture is a group of knowledge-based controllers
that apply control from a local viewpoint. These
controllers are hierarchically organized in a
structural/functional hybrid design [4].

 Controllers are responsible for making decisions about
how control actions will be performed, what those actions
will be, when they occur, and how their performance will
be measured. Controllers are also responsible for
reasoning about system state, diagnosing errors in control
solutions, decomposing goals into tasks and actions, and
initiating any necessary human interaction. Knowledge is
encoded in each controller as a set of relations (n-ary
predicates) and a set of operators that manipulate those
relations. The predicates describe relationships between
controller variables, facts about process state, task
decomposition relationships, and message parameters for
controller communication.

 In addition to controllers that encode information about
domain specific elements, algorithms, and experience, we
also use solvers for component-based application of
specific algorithms. Solvers encode pieces of algorithms
which can be put together (again in a hierarchical
manner) for run-time construction of control algorithms.
Consider, for example, a search procedure for a search
algorithm such as simple hill-climbing for optimizing
beam transmission. The procedure is broken into three
parts, a component for generating data points that must be
measured during search, a component for measuring the
data points using appropriate elements in the domain, and
a parent controller which coordinates actions of the two
children in a way that produces hill-climbing. A different
algorithm, such as Newton’s method, can be constructed
by merely substituting the parent controller for one that
applies a different top-level procedure. Different child
controllers may also be substituted when operating
different sets of control elements or in cases where
specific constraints (e.g., noise handling, speed, etc.) are
important [5].

4 TELEO-REACTIVE BEHAVIOR

 Controllers built for tuning beam lines were designed to
carry out reactive plans to maintain robustness and to
support dynamic re-planning based on changing goals or
world states. Reactivity was obtained by using a teleo-
reactive (TR) rule structure. The TR architecture was

2423

originally designed as a control system for autonomous
robots. [6] The purpose of teleo-reactive programs, also
called TR trees, is to encode a plan for achieving a goal
and allow reactive execution of control actions based on
observed world state. TR plans are coded as ordered lists
of condition-action pairs. Each condition specifies a state
of the environment that must be true in order to perform
the action. The TR plan is executed by checking the
preconditions of each TR rule in the tree in order. If a rule
has a satisfied precondition, its associated action is taken.
World state is then reevaluated and the tree is cycled
again. Only the rule with highest ordering whose
conditions are satisfied is activated at each iteration.

 Each control action is intended to make a condition for a
higher ordered rule true. Control algorithms are provably
correct if the union of all rule preconditions identifies the
universe of possible world states, and if all actions
guarantee the eventual satisfaction of a higher
precondition. TR trees allow reactive plan execution,
since the action that corresponds with the observed world
state is taken at each time step. If the world state changes
to a state further from the goal state, a lower level rule
automatically activates and control moves the state closer
to the goal. If a benevolent world state occurs, causing
the world state to jump closer to goal, the control system
skips unnecessary control actions.

5 LEARNING

Learning is intended to occur in our control architecture
at many levels. Rather than regarding learning as a
centralized activity, the framework supports the use of
local learning techniques in different structures. This
view of adaptive behavior fits in with the overall
distributed local-control scheme on which the entire
architecture is based [5].

Low-level learning in the form of pattern recognition and
feature detection can occur in the PAL through the use of
adaptive filters attached to feedback objects. Neural
networks, fuzzy classifiers, and other adaptive systems
can identify system behavior and store learned
information as network weights, fuzzy sets, etc. These
filter parameters can be stored at the controller level and
passed back to the PAL during future tuning.

Conventional adaptive control methods can be used at the
solver level to enhance the locally adaptive nature of the
system. Well understood techniques exist for applying
such algorithms as adaptive PID, Kalman filters, etc.
Controller-level learning involves deeper knowledge-
level issues. Since these modules operate over longer
time scales and often contain strategic or goal oriented
information, high level learning algorithms such as case
based learning and decision tree induction are appropriate
[5].

One area of learning which we have begun to study in
detail is model refinement. Model refinement is the
process of identifying system behavior with some
uncertainty, and then refining the model through
observation as well as active experimentation to reduce
uncertainty or adapt the model to changing conditions.
Physicists often use complex model refinement
techniques to work from an analytic model, as coded in
TRANSPORT, COSY, etc., and iterate between beam
tuning and model adaptation and search. Our goals are to
adapt these methods within the framework of our
automatic control system.

5 SUMMARY

We have described a distributed, hierarchical architecture
for beamline control combining heuristic, knowledge-
based, and conventional control methods. This hybrid
architecture integrates a variety of reasoning, search, and
pattern recognition methodologies. Preliminary tests,
reported in [1, 2] indicate the potential for emulating and
often exceeding the performance of skilled human
operators. Continuing research includes extending the
diagnostic, model refinement, planning, and learning
components of the system.

ACKNOWLEDGMENTS

This work was supported by a DOE SBIR contract (#DE-
FG05-95ER81897) to Vista Control Systems, Inc. We
thank Mike Kroupa, Bob Knight, and Bob Westervelt of
Vista. We thank Andy Jason of LANL and Xijie Wang of
BNL-ATF for helping us understand accelerator physics.

REFERENCES
[1] Klein, W., Stern, C., Kroupa, M., Westervelt, R.,

Luger G., and Olsson, E. 1997. Tuning and
Optimization at Brookhaven and Argonne: Results of
Recent Experiments, Proceedings of the Particle
Accelerator Conference, American Physical Society.

[2] Klein, W., Stern, C., Luger, G., and Olsson, E. 1997.
An Intelligent Control Architecture for Accelerator
Beamline Tuning, Proceedings of Innovative
Applications of Artificial Intelligence, Cambridge:
MIT Press.

[3] Clout, P. 1993. The status of Vsystem. Proceedings
of the Third International Conference on Accelerator
and Large Experiment Physics Control Systems,
Germany.

[4] Acar, L. and Ozgunner, U. 1993. Design of
Structure-Based Hierarchies for Distributed
Intelligent Control. In Antsaklis et al., An
Introduction to Intelligent and Autonomous Control,
Boston: Kluwer.

[5] Klein W. 1997. A Software Architecture for
Intelligent Control, Ph.D. Dissertation, Computer
Science Department, University of New Mexico.

[6] Nilsson, N. 1994. Teleo-Reactive Programs for
Agent Control. Journal of Artificial Intelligence
Research 1:139-158.

2424

