
COSY INFINITY VERSION 7

Martin Berz, Department of Physics and Astronomy and National
Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824

Abstract

An overview over the features of version 7 of the code
COSY INFINITY is given. The code allows the compu-
tation and manipulation of maps of arbitrary order for arbi-
trary arrangements of fields, and it is currently distributed
to about 200 registered users. We present several features
of the code, among which are the conventional analysis
tools including various techniques for symplectic tracking,
normal form methods, hardware and reconstructive aber-
ration correction, and achromat design. We also discuss
several new techniques which include efficient methods to
treat fringe fields, a variety of methods to directly use mea-
sured field data for the computation of maps, as well as the
computation and analysis of spin dynamics.

1 INTRODUCTION

This paper provides background of the code COSY INFIN-
ITY and its language, and examples of some of the fea-
tures in COSY INFINITY[1]. These include methods for
symplectic tracking[2][3], normal forms[2][4], and recon-
structive correction of spectrographs[5]. New features in-
clude the SYSCA fast fringe field methods[6][7][8][9], the
computation of maps from arbitrary measured fields, the
computation and analysis of spin dynamics[10][11] which
is getting more important due to the increasing number
of studies connected to the acceleration of polarized par-
ticles, as well as the tools used for the design of fifth order
achromats[12][13][14], and the new remainder-enhanced
differential algebraic method[15][16][17][18][19]. Besides
these features based on new techniques, there are also a va-
riety of other new tools of a more technical nature. These
are connected to standard problems of accelerator design,
to interactive graphics, as well as to several improvements
of existing tools. A good overview over the key features of
the code can be found in the extensive demo that is part of
the COSY shipment. Information about COSY can also be
obtained at www.beamtheory.nscl.msu.edu/cosy.

2 THE CODE COSY

COSY INFINITY is a code for the simulation, analysis and
design of particle optical systems. Since the first official
version in 1989, a total of seven releases with an increas-
ing number of features have been provided, and currently
there are a total of about 160 registered users as shown in
Figure 1. COSY is based on differential algebraic meth-
ods, which are described in detail elsewhere[2][20][21],
and which lately have been widely used also in most of
the other newly emerging codes.
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Figure 1: Some statistics about COSY INFINITY (picture
generated with COSY’s graphics environment and part of
the COSY Demo).

For the sake of portability, the code is based on standard
FORTRAN 77, which is still the most widespread language
on the computers used for accelerator design and simula-
tion. Since the code employs its own programming lan-
guage which is object oriented and has the flavor of PAS-
CAL, COSY’s programmers and users are free from FOR-
TRAN. The COSY language has very simple syntax which
makes programming easy, and its elements are as follows:

BEGIN ; END ; {Begins and ends program}
INCLUDE ; SAVE ; {Includes and saves }

{ compiled code}
VARIABLE ; {Declares a local }

{ variable}
PROCEDURE ; ENDPROCEDURE ; {Declares a local }

{ procedure}
FUNCTION ; ENDFUNCTION ; {Declares a local }

{ function}
< assignments > ; {Sets value of variable}
< procedure calls > ; {Calls previously }

{ defined procedure}
IF ; ENDIF ; {Executed once if }

{ argument is true}
WHILE ; ENDWHILE ; {Executed while }

{ argument is true}
LOOP ; ENDLOOP ; {Stepping argument }
FIT ; ENDFIT ; {varying arguments to }

{ fit conditions}

Except for the last one, the flow control statements are
rather standard. The unique FIT block is used for efficient
utilization of COSY’s various optimizers. The ENDFIT
statement contains the number of the optimizer to be used
and the objective quantities, as well as the tolerance and the
maximum number of iterations allowed. The statements in
the block are executed over and over again, where for each
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pass the optimization algorithm changes the values of the
variables listed in the FIT statement and attempts to mini-
mize the objective quantity.

A language environment makes the assembly of beam-
lines and the control of program flows very straightforward.
For example, all standard particle optical elements are just
represented by a procedures call, and user-made particle
optical elements can have the same form. Groups of ele-
ments can be represented by new procedures, and the en-
tire lattice can itself be represented by a procedure. There is
also a conversion tool that allows to transform any lattice in
standard MAD input to such a COSY procedure. In a sim-
ilar way, commands for common tasks are also expressed
as procedure calls.

The compiler for this language comprises about 6,000
of the approximately 25,000 lines of COSY’s FORTRAN
code. It has a completely rigorous syntax and error analysis
and is comparable in speed to other compilers. The com-
piled code is stored in a binary file, which can either be
saved for inclusion in later code or executed directly. The
object oriented features of the code allow a direct use of
the differential algebraic operations contained in the 16,000
line DA package.

3 THE FAST FRINGE FIELD CALCULATION

COSY has several options to take account of the fringe
field. One is to compute the exact fringe field through DA
integration of the equations of motion. In this case, the
accuracy is limited only by the accuracy of the numerical
integrator, which is adjusted via automatic step size con-
trol. While this method provides a very detailed fringe-
field calculation, the computational expense becomes quite
high. One of the other approaches to compute fringe-field
in COSY is the SYSCA method. It is based on a combina-
tion of geometric scaling in TRANSPORT coordinates and
symplectic rigidity scaling[6][7][8][9].

It uses parameter dependent symplectic representations
of fringe-field maps stored on files to approximate the
fringe field via symplectic scaling. This method computes
fringe fields with a very high accuracy, yet its computa-
tional expense is two or three orders of magnitude less than
direct integration and in the same terrain as that of main
field only calculation. While the reference file can be pro-
duced by a user in COSY according to the detailed shape of
the fringe fields at hand, one standard reference file comes
as part of the COSY shipment. The SYSCA fringe-field
mode is especially helpful in the final design stages of a re-
alistic system after approximate parameters of the elements
have been obtained by neglecting fringe fields or with other
rough fringe-field calculation.

4 THE MEASURED FIELD DATA ELEMENT

One of new elements in COSY INFINITY, the measured
field data element, allows the computation of the map of
any magnetic field supplied by midplane measured data.

The measured data has to be supplied at equi-distant grid
points in cartesian coordinates.

The necessary interpolation method has to guarantee the
differentiability to fit with the differential algebraic compu-
tation. Because of this, the evaluation of the field strength
in the element in COSY is done by Gaussian interpolation,
which is a powerful special case of a wavelet transform:

By(x, z)

=
∑
ix,iz

Bix,iz

1
πS2

exp
[
− (x− xix )2

4x2S2
− (z − ziz )2

4z2S2

]
,

whereBix,iz are the supplied measured data. Since the
gaussian function falls off quickly, the time consuming
summation over all the gaussians can be replaced by the
summation of only the neighboring gaussians, which is in
the vein of other wavelet transforms and greatly improves
efficiency.

The method is used extensively in the simulation of
the S800 Spectrograph at NSCL/MSU[5], construction of
which has just been completed, as well as the various spec-
trographs at CEBAF.

5 SPIN DYNAMICS

In version 7, features to analyze spin motion have been
added in COSY[10][11]. The classical equation of motion
for spin has the form

d~s

dt
= ~w × ~s;

for details, see [11]. The solution is a linear orthogonal
transformation depending on orbital variables, thus

~sf = Â(~z) · ~si, where Â(~z) ∈ SO(3).

The motion of a particle with spin can be described as a
nine dimensional motion, neglecting spin-orbit coupling,
as

(
~z
~s

)′
= ~F (~z,~s, s) =

(
~f(~z, s)

Ŵ (~z, s) · ~s
)

(
~zf

~sf

)
= ~M(~zi, ~si, s) =

( M(~zi, s)
Â(~zi, s) · ~s

)
.

To reduce dimensionality and utilize linearity, it is ad-
vantageous to set up the equation of motion forÂ. Inser-
tion yields the equation of motion for the3× 3 spin matrix
depending on only the six orbital variables:

Â′(~z, s) = Ŵ (~z, s) · Â(~z, s).

The COSY spin features have been used extensively at
DESY and a variety of other places.
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6 OTHER FEATURES

A recent application of COSY was the design of higher
order achromats, and recently some extensive work con-
nected to fifth order achromats has been done[12][13][14].

The new remainder-enhanced differential algebraic
(RDA) method combines the rigor of interval computa-
tions and a reduction of blow-up due to its use of Tay-
lor polynomials. For the purposes of beam physics, it al-
lows the determination of rigorous bounds for the remain-
der term of Taylor maps, and combined with methods to
determine approximate invariants of the motion, it can be
used for guaranteed estimates of stability times in circular
accelerators[15][16][17][18][19].
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