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Abstract

The use of two crossed laser pulses in a plasma for the
cathodeless production of high current low emittance
electron beams [1] is examined with fully relativistic 2-
1/2D Particle-in-Cell (PIC) simulations. Estimates for the
number of injected particles, their energy spread, and their
emittance are given as functions of the amplitude and
timing of the injection pulse relative to the drive pulse of
the LWFA. The physical mechanism of the trapping of
particles is examined based on single particle phase space
trajectories in the self-consistent PIC simulations.

1  INTRODUCTION

Recently D. Umstadter et al.[1] proposed the use of
two orthogonal laser pulses in a plasma to trap and
accelerate an ultra-short bunch of electrons. As envisioned
the first (or drive) pulse creates a plasma wave which is
below its self-trapping or wavebreaking threshold. The
transverse ponderomotive force of the second (or injection)
pulse gives electrons an extra kick forward in the wake
direction, enabling them to be trapped and accelerated in
the wake of the drive pulse (fig. 1). Such a cathodeless
injector is of interest for a wide variety of applications
including as an injector for future linear accelerator
technologies with short wavelength accelerating
structures. The scheme also naturally overcomes problems
of synchronizing the injector with a plasma based
accelerator.

In this article, we present results from a detailed
two-dimensional (2D) PIC simulation analysis of this
concept. We find that our results clearly support the
feasibility of such a cathodeless injection scheme, but that
the physical mechanism for the trapping is different from
the one originally suggested at least for the parameter
regime studied in this paper. We will show that the
number of particles, emittance , and energy spread can all
depend sensitively on the laser parameters and the
injection phase. These results place constraints on the
allowable shot to shot jitter of the injection laser. Last,
based on the new insight into the trapping mechanism,
we put forth additional geometries, e.g., co- and counter-
propagating pulses, as well as related injection

1  SIMULATION RESULTS

The simulations are conducted with the single node
version of the fully relativistic 2-1/2D PIC code
Pegasus[2]. This code implements a moving simulation

box that can follow the laser pulse for extended periods of
time. Pegasus uses the charge conserving algorithm
algorithm in ISIS and solves locally for E and B fields.
Fig. 1 shows the basic set up of the simulations.
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Fig. 1. Geometry of the cathodeless injector
concept. The injection phase of the injection pulse is
defined by the distance between the trailing edge of the
drive pulse and the center of the injection pulse when it
crosses the drive pulse.

In each of the simulations a drive pulse starts to
move in the x1 direction and at a later time an injection
pulse is launched from a vacuum region at the side of the
box propagating in the x2 direction as illustrated in fig. 1.
The following parameters are valid for most of the
simulations evaluated below and should be assumed for all
of the results presented if not stated differently. The
frequency ratio ω ω0 p  between the laser frequency and

the plasma frequency is 5 for both; thus the simulations
have fewer laser cycles than is typical in experiments.
Both pulses have their polarization in the plane of the
simulation. For the drive pulse the normalized vector
potential is a = eAy /mc2 = 1.00. For the injection pulse
the normalized vector potential is b = eAx /mc2 = 2.0
unless stated otherwise. The transverse profile is given by
a gaussian. Both the drive and the injection pulse have a
spot size of 3c pω . The pulse length, full width from

zero to zero, is 2 π ωc
p
 for the drive pulse and π ωc

p
 for

the injection pulse. We define the injection phase ψ  to be

the distance between the back of the drive pulse and the
center of the injection pulse as it crosses the axis (fig. 1).

The engineering results of the simulations are
summarized in fig. 2. In order to convert the simulation
results to physical units, we assume a plasma density of
1016cm-3. Note that the number of electrons as well as the
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normalized emittance both scale with n-1/2[3]. All
quantities including the energy spread are calculated after
the final timestep of the calculation. The energy of the
trapped particles is around 10 MeV at that time (compared
to a theoretical maximum value of about 25MeV for these
simulations).
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Fig. 2. (a) The number of trapped electrons, the
normalized emittance, and the energy spread of the trapped
particles as a function of the injection phase. The
injection amplitude b is 2.0.

In fig. 2a we plot the number of trapped electrons,
the normalized emittance, and the energy spread as a
function of the injection phase for a fixed value of the
injection amplitude. That value is b = 2.0. Note that
negative values for ψ  mean that the center of the

injection pulse crosses before the end of the drive pulse.
The most notable feature of fig. 2a is the great variation
of the three beam quantities as a function of ψ  and

especially the strong difference in the number of particles
and their emittance between positive and negative
injection phases. The direct overlap of the injection pulse
with the drive pulse (i.e. negative injection phase) clearly
yields the largest number of trapped particles. The
maximum number of trapped electrons corresponds to 1.9
x 109 at a plasma density of 1016cm-3 (or to 6 x 107 at a
density of 1019cm-3). The number decreases by an order of
magnitude for positive injection phases. The emittance on
the other hand is smallest for the positive injection
phases, corresponding to the smallest normalized value of
16π  mm mrad in a 1016 cm-3 density plasma (or 0.5π
mm mrad at 1019 cm-3). It increases by a factor of five for
negative injection phases. We believe that the relatively
larger emittance and number of particles at negative ψ  are

both due to stochastic motion of the plasma in the
overlapping laser fields. The energy spread of the
accelerated bunch does not vary as significantly as the
particle number and emittance ; it is between 8% and 22%
at a beam energy of 10 MeV and would be expected to
scale as 1 γ  if the simulations with larger dephasing

energies were done. There is an interesting periodicity to
the curves in fig. 2a. The energy spread, and to some
extend the number of particles, oscillate with a period of
roughly 2π , suggesting that they follow the periodicity

of the accelerating plasma wave field. The emittance
oscillates with a period of π  which follows the
periodicity of the magnitude of the focusing field of the
accelerating wake.

Although the simulations with b = 2.0 produce
similar numbers of particles at ψ  = 1.3π  or 1.8π , as

can be seen from fig. 2a, for b =1.8 the number of
particles changes from several 108 at ψ  = 1.3π  (see fig.

2b) to nearly zero at ψ  = 1.8π  (data not shown in

figures). The results of the simulations are therefore
sensitive to these parameters and the curve found in fig.
2a for the injection phase dependence at injection
amplitudes of 2.0 is not readily applicable to other values
of this parameter.
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Fig. 2. (b) The number of trapped electrons, the
normalized emittance, and the energy spread of the trapped
particles as a function of the injection amplitude. The
injection phase ψ  is 1.3π .

In fig. 2b we plot the same quantities as in fig. 2a
but as a function of the injection amplitude for a fixed
value of the injection phase ψ . The value of ψ  = 1.3π
is chosen for the simulations of fig. 2b since it seems to
be close to an optimal injection phase judging from the
data of fig. 2a. As a function of the injection amplitude
the normalized emittance and the energy spread do not
seem to show any systematic behavior on the scale that is
resolved by our simulations. The values of the energy
spread vary between 8 % and 15 %, while most of the
values for the emittance are between 20 π  mm mrad and
50 π  mm mrad. In one case the emittance goes up to 106
π  mm mrad. This means that the beam quality is quite
sensitive to variations in the injection amplitude. The
number of trapped electrons on the other hand shows a
systematic behavior. As should be expected the number of
trapped particles first rises with increasing injection
amplitude and then falls off. We explain this decrease with
the increase in transverse momentum (p2) that is
transferred to the particles by the injection pulse. At a
certain value this transverse momentum becomes large
enough to prevent the trapping of the particles.
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The above results indicate that the properties of the
electron bunches obtained in the simulation is promising.
We give here the values for the simulation atψ  = 1.8π
with an injection amplitude of a = 2.0 interpreted at a
density of n = 1016cm-3. The average current of a bunch  is
170 A. The normalized brightness is 6.8 x 1010 A/m2.
The beam is not space charge dominated [4]. It is an
approximately matched beam and its emittance is about
10% of the acceptance of the plasma wave[3]. The beam
density is 3x1014cm-3, 3% of plasma density. Note that
the beam brightness and density increase linearly with  the
plasma density.

To gain a deeper understanding of the process we
follow the momentum of a single, typical, trapped
particle as function of time in the 2D simulation. We
consider a particle for the case of ψ  = 1.3π  and b = 1.8.

The data are shown in fig. 3. The initial momentum is
zero since the simulation uses cold plasma.
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Fig. 3. p1 of a test particle as a function of time.
The two curves are the results from simulations with
(solid) and without (dashed) an injection pulse. ψ  = 1.3π
and b = 1.8 for the simulation with an injection pulse.

The solid curve in fig. 3 shows the longitudinal
momentum of the particle; the dotted curve shows p1 for
the same particle in a simulation were the injection pulse
is not launched but that is otherwise identical. As
expected, this particle simply oscillates in the wake of the
drive pulse. In the full simulation we can see that the
injection pulse has completely passed by the test particle
at about the time t=31.7. Although the injection pulse
has an impact on the particle, the really large changes
occur later at a time when the injection pulse has already
left the area of the test particle. This means that the
particle gets the actual momentum needed for getting
trapped not from any effect directly related to the laser
pulses (since those have already left the area of the
particle), but by effects related to the interaction of the
two plasma wake fields created by these pulses. Note that

the trapped particle goes through one full oscillation
(accelerating, decelerating, and accelerating again) before it
is trapped. This feature that the particles get accelerated
above the trapping threshold in a multi-step process
(acceleration-deceleration-acceleration) caused by the
interaction of the wake fields is not unique to this
particular simulation. Other simulations with different
values for ψ  and b show the same process.

1  CONCLUSIONS

In this paper, we have found that the beam
brightness and quality found in our simulations compares
reasonably with that of electron bunches produced by
other technologies. The mechanism for the trapping of
particles is not the transverse ponderomotive force of the
injection pulse, rather it comes from the interaction of the
particles with the two plasma wakes. It should be noted
however that this does not rule out the possibility that a
different choice of parameters for the injection pulse
might result in trapping due to a direct kick by the
transverse ponderomotive force. The results of our
research open up a number of possibilities for future
investigations.

Two important goals of future research would be to
find an analytical model of the process that is able to
predict the results seen in the simulations and to use 3D
PIC simulations. This will facilitate optimizing
parameters and determining what are the fundamental
limits on beams produced by this scheme. Secondly
additional geometries need to be investigated , such as co-
and counter-propagating drive and injection lasers. The
crucial idea here is that the Rayleigh length of the
injection pulse is much shorter than the Rayleigh length
of the drive pulse. This means that the injection pulse
will interact significantly with the plasma only for a short
distance. Our preliminary results show that the combined
plasma wakes have an amplitude that is temporarily large
enough to cause local wavebreaking. The fact that the
plasma wave is responsible for the trapping of particles in
our simulations suggests also to investigate other ways to
excite this plasma wave that causes this trapping. If a
method could be used that builds up the plasma wave
gradually over time like a PBWA[5], then less powerful
lasers would be required.
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