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The Vibrating wire field-measuring techniquepresented
here is dedicated to the problem of alignment of quadrupole
magnets and is based on the following principle. The
stretched wire has vibrational modes consisting of the fun-
damental mode and higher harmonics. The half wave
length of the fundamental mode is equal to the length of
the wire. Suppose there is a transverse magnetic field sur-
rounding wire. If the frequency of the current in the wire
is an eigenmode frequency of wire vibration, it will excite
a corresponding harmonic. The strength and phase of exci-
tation will depend on the field distribution along the wire.
Using various frequencies and measuring amplitudes and
phases of the resulting vibrations, one can extract informa-
tion about the field distribution in order to reconstruct it.
The field in turn shows the misalignment of quadrupoles.

In comparison with the pulsed-wire method, see [1]-
[4], the vibrating wire technique does not require the wire
length to be longer than the length of the test region, and
due to its extraordinary sensitivity it does not require the
higher voltage for the long wire scheme. Therefore, it may
be more appropriate for some projects.

1 THEORY

Figure 1 displays the setup used in experiments and in cal-
culations below. A wire with tensionT and lengthl has the
fixed ends atx = 0 andx = l. The current, I(t), in the wire,
i.e., driving current, depends on time asI(t) = I0exp(iωt).
The wire crosses a region with horizontal magnetic field,
By(x), which is zero at the ends,By(0) = By(l) = 0.
Consider the vertical plane. There are two forces affecting
the wire. They are gravityg · µ, whereµ is mass of wire
per unit of length, and the Lorentz forceBy(x) · I(t).

The equation for vertical wire position,U(x, t), will be:

µ
∂2U

∂t2
= T

∂2U

∂x2
−γ

∂U

∂t
−µg+By(x) · I0exp(iωt) (1)

With boundary condition:

U(t, 0) = U(t, l) = 0 (2)

Here termγ ∂U
∂t describes damping. A general solution

may be written in the form:

U(x, t) = Ug(x) + Ud(x, t)
Ud(x, t) = Ub(x) · exp(iωt) (3)

WhereUg(x) is the gravity term andUd(x, t) is the dy-
namic term caused by the interaction between the magnetic
field and the driving current. An approximate expression
for Ug(x) is:
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Figure 1: Scheme of vibrating wire experiments.

Ug(x) = −µg

2T
x(x − l) (4)

Note that at the pointx = l/2 functionUg(x) reaches its
minimum which is the sag, S.

S = −µg

8T
l2 (5)

Function Ub(x), determined by magnetic field, may be
found in the following way. AsUb(x) satisfies the con-
dition Ub(0) = Ub(l) = 0, it can be represented by Fourier
sine series:

Ub(x) =
∞∑

n=1

Un sin
(πn

l
x
)

(6)

The magnetic fieldBy(x), with similar boundary condi-
tions, may be represented in the same way:

By(x) =
∞∑

n=1

Bn sin
(πn

l
x
)

(7)

Substituting 3,4,6 and 7 into equation 1 we set:

∞∑
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ωn = 2π
n

2l

√
T

µ
(9)

Combining expression 9 with the formula for sag,
(see 5), one can find a simple relation between sag and the
fundamental mode frequency:
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(10)

This means that to obtain the sag we only need
to measure the fundamental frequency and usingg =
9.80665 m/sec2 we can precisely calculate the sag.

By comparing the right and left sides of equation 8 one
can find a connection between coefficientsUn andBn and
write the dynamic part of the general solution of equation 1
as:

Ud(x, t) =
∞∑

n=1

Bn sin
(

πn
l x

)
(ω2 − ω2

n + iγω)
I0exp(iωt) (11)

Consider how to obtain coefficientsBn of expansion 7
and reconstruct the magnetic field knowing the wire motion
at the sensor location. Suppose the wire position sensor is
located at the pointx = xs. Let us construct the function
F(ω) which is the time average of the product of wire po-
sition,Ud(xs, t), and driving current,I(t):

F(ω) =
1
T

∫ T

0

Ud(xs, t)I(t)dt =
∞∑

n=1

Fn(ω) (12)

Fn(ω) =
BnI2

0

2µ
sin

(πn

l
xs

) (ω − ωn)
4ω(ω − ωn)2 + ωγ2

(13)

Note that due to weak damping the wire motion has a high
quality factorQ. It causes strong resonance amplification,
and if the frequency of driving current is nearωn, i.e.,
ω ≈ ωn, the resonance termFn in equation 12 will domi-
nate over the rest, i.e. ,F(ω) ≈ Fn(ω). Suppose we scan
the driving current frequency through one of resonance fre-
quencies,ωn. By recording both the driving current and
signal from wire position sensor and doing numerical inte-
gration, (see formula 12), we can measure functionFn(ω).
Then we have to fit this measurement with the formula:

Fn(ω) = an
(ω − bn)

4ω(ω − bn)2 + ωc2
n

(14)

wherean, bn, cn are free parameters. ComponentBn is
obtained froman as:

Bn = an
1

sin
(

πn
l xs

) 2µ

I2
0

(15)

Repeating this procedure for variousωn, and using equa-
tion 7, we will reconstruct the magnetic field profile along
the wire. Note that the resolution of reconstruction will
depend on how many harmonics will be used and will be
approximately equal to the shortest wavelength of the ex-
cited modes. Motion in the horizontal plane does not dif-
fer from vertical motion except for the gravity term. The
next sections describe model measurements and the practi-
cal application of the vibrating wire technique.
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H a r # a ( n ) B ( n )
1 6.76E+02 3.45E+03
2 9.08E+02 2.36E+03
3 -8 .08E+02 -1 .45E+03
4 -2 .25E+03 -3 .16E+03
5 -8 .94E+02 -1 .07E+03
6 1.82E+03 1.96E+03
7 1.98E+03 2.01E+03
8 -1 .16E+02 -1 .16E+02
9 -1 .79E+03 -1 .83E+03

1 0 -7 .66E+02 -8 .33E+02
1 1 4.83E+02 5.85E+02
1 2 7.13E+02 1.02E+03
1 3 7.62E+01 1.40E+02

Figure 2: Measured functionF(ω) and coefficientsan ob-
tained from fitting. Points show measurements, lines are
fits with formulaFn(ω) = an

(ω−bn)
4ω(ω−bn)2+ωc2

n

2 MEASUREMENT

Wire used in the experiments was100 µm diameter made
with alloy of copper-beryllium. A phototransistor-LED as-
sembly, (Motorola H21A1), was deployed as a wire posi-
tion monitor. This kind of device was widely used in pre-
vious work, (see for example [2] and [4]). Note that the as-
sembly may be oriented in such way that it will effectively
sense wire motion in one plane, in horizontal or in verti-
cal . To detect motion in other plane the assembly must be
rotated by 90 degrees. Macintosh Quadra 800 with Lab-
NB Interface Board provided almost all needs of the mea-
surements. An application program created in LabVIEW
scanned the driving current frequency, recorded and ma-
nipulated signals, made fits and etc. The final output yields
the magnetic field measured along wire.

A one meter long wire was used in the first modeling
measurement. The wire motion detector was placed 7.5 cm
from one of the ends. A small permanent magnet placed
along the wire created a magnetic field for testing. The
strength of the field was controlled by the distance between
magnet and wire.

Figures 2 and 3 illustrate the description given in the pre-
vious section. Plots in figure 2 show the results of excita-
tion of the first three harmonics out of thirteen which were
used in the measurement. Points show the measured func-
tionF(ω) defined in the theoretical section. A line is fit to
formula 1. There is a good agreement between the mea-
surement and fitting in all cases. The table on figure 2
shows the parametersan obtained from fitting all 13 har-
monics. and coefficientsBn calculated froman. The field
distribution reconstructed by equation 7 is plotted in fig-
ure 3. It shows a very clear signal from the magnetic field.
Note that the width of the signal,∼ 10 cm, is determined
by the shortest harmonic wavelength used in the measure-
ment.

The next experiment was to find the magnetic center of
permanent magnet quad using a longer wire. Available
setup space allowed use of wire of3m length. The test
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Figure 3: ComponentsBn, (see plot a), calculated from
coefficientsan and reconstructed magnetic field, (see plot
b). Dotted lines show the first 5 harmonics corresponding
to Bn.
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Figure 4: Horizontal magnetic field along wire after con-
ventional alignment, (see dotted line), and after vertical
alignment with vibrating wire technique, (see solid line).

permanent magnet quad was30 cm long with a14.8 T/m
gradient.

In the beginning, the mechanical center of quad was ad-
justed to the wire position with traditional measuring tools,
i.e., using rulers. The precision of this alignment was ap-
proximately0.1 mm. Note that magnetic center of the quad
may differ from its mechanical center.

The vibrating wire measurement gave the horizontal
field distribution shown by the dotted line in figure 4. The
square at the bottom shows the location and size of the test
magnet. In the measurement 30 harmonics were used, with
shortest wavelength equal to20 cm. This wavelength is
1.5 times shorter than the length of the test magnet and al-
lowed us to see details of the field generated by magnet.
This plot shows two unequal maxima of different polarities
which correspond to the magnet ends. This kind of field
distribution is due to a combination of tilt and shift of mag-
netic axes in the vertical plane relative to the wire. The
solid line on figure 4 shows the final field distribution after
a few iterations of measurement and adjustment of vertical
quad position. The maximum amplitude is approximately
10 times less than it was in the beginning.

After the quad’s magnetic center was adjusted to the wire
position in the vertical and horizontal plane, using high
precision optical instruments it was found that the mis-
alignment between geometrical and magnetic center was

in range between125 µm and500 µm.

3 DISCUSSION AND CONCLUSION

Consider the time needed for measurement. The weak
damping of wire vibration which gives the enormous sen-
sitivity of the technique slows the process of measurement.
After each frequency change one must wait for about 3-
5 seconds to reach equilibrium of wire motion and then
record signals. Due to this delay the measurement consist-
ing of many harmonics may take a relatively long time. For
example, the time for measurement consisting of 13 har-
monics with 11 steps of frequency scan for each of them,
(see figure 3), was about 10 minutes. Another example,
(figure 4), consisting of the analysis of 30 harmonics re-
quired 25 minutes. However the magnet alignment de-
scribed above, did not require analysis of so many harmon-
ics. Only two of them, most sensitive to the magnet shift
and tilt, were used during this procedure. The full mea-
surements, i.e. using 30 harmonics, were done just in the
beginning and at the end to verify final result.

The another aspect is the effect of non-zero field at one
of the ends of wire. One can suspect that this field may
have propagated an effect along wire. This arrangement
has been simulated with software “Mathematica” for Mac-
intosh and two important conclusions have been derived.
The difference between “real” and “measured” field pro-
files is localized around the wire end in a length of region
approximately equal to that of the shortest wave length and
a non-zero field at the wire end does not have an effect on
the determination of the field profile away from this end.

Theoretical consideration and experiments reported
above demonstrate that the vibrating wire technique is a
convenient method for the precise alignment of magnetic
centers of a series magnetic elements. It has enormous sen-
sitivity and does not require any special equipment.

In comparison with the pulsed-wire technique it does not
need more space than the length of the test region and does
not require generating very high voltage pulses on a long
wire.
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