
NETWORK UPGRADE FOR THE SLC: CONTROL SYSTEM
MODIFICATIONS

M. Crane, R. MacKenzie, R. Sass, T. Himel
Stanford Linear Accelerator Center, Stanford University, Stanford CA 94309

Abstract

Current communications between the SLAC Linear
Collider control system central host and the SLCmicros is
built upon the SLAC developed SLCNET communication
hardware and protocols. We will describe how the Internet
Suite of protocols (TCP/IP) are used to replace the
SLCNET protocol interface. The major communication
pathways and their individual requirements are described.
A proxy server is used to reduce the number of total system
TCP/IP connections. The SLCmicros were upgraded to use
Ethernet and TCP/IP as well as SLCNET. Design choices
and implementation experiences are addressed.

I. CURRENT SLC CONTROL SYSTEM

The current SLC Control System micro communication
services are based on the SLCNET communications pro-
tocol. The SLCNET system was developed at SLAC in the
1980’s and consists of a master node and up to 255 slave
nodes connected by custom hardware and software. The
master, or VMS central host is a DEC Alpha computer
running the OpenVMS operating system. The slaves, or
SLCmicros, are Intel ix86 single board computers in Mul-
tibus I crates running the iRMX real time operating sys-
tem. The SLCNET clock rate is one megahertz and the
protocol used is SDLC.

Message passing is supported between individual pro-
cesses on the VMS host to individual tasks on the SLCmi-
cros. The most prevalent VMS host process is the SLC
Control Program or (SCP), of which there can be many
running concurrently. The SCP provides the main user
interface to the SLC Control System. There are also
stand-alone processes which communicate directly to the
SLCmicros to collect error reports, distribute database and
timing information. All together this involves 50-100 pro-
cesses on the VMS host communicating with 1-10 tasks
on the SLCmicros. The basic tools to boot, debug, and
query diagnostic information from the SLCmicros are also
available over SLCNET.

The VMS host is equipped with Ethernet and FDDI
interfaces which provides support for TCP/IP. The VMS
host TCP/IP stack is Multinet which provides communica-
tions to various network nodes used in the control system
such as EPICS nodes, X-terminals and others. The SLC-
micros do not presently support Ethernet or TCP/IP.

II. ENTER ETHERNET AND TCP/IP

The decision to upgrade the SLC Control System VMS

host and SLCmicros to use TCP/IP protocols was based
on projected bandwidth requirements, hardware availabil-
ity, and maintenance issues. Please refer to the network
upgrade paper for more information1. The upgrade of the
SLC Control System and the SLCmicros would make
TCP/IP the common communications protocol for all
PEP-II control system nodes.

This upgrade project required that code be modified
or written for both the VMS host and the SLCmicros. This
code supports both SLCNET and TCP/IP communications
paths since we plan to upgrade as schedule and budget
constraints permit. There are some applications that
require significant modifications and others that require
complete new software to use TCP/IP.

The TCP stream-based protocol was chosen for
nearly all the applications since a reliable data stream with
flow control is required. TCP connections are setup once
and remain for the lifetime of the SLCmicro task or VMS
host process. This reduces connection overhead. Since the
VMS host and the SLCmicros enjoy the same byte align-
ment, the data will be passed in little-endian order.

The Multinet package on the VMS host supports both
TCP/IP BSD3.4 socket interface and the standard VMS
QIO interface. The SLCmicro uses the Fusion TCP/IP
stack ported to the iRMX operating system

III. A PROXY SERVER

On the VMS host there can be 50 SCPs plus 10-20
stand-alones running concurrently while there are about
70 SLCmicros in the system. Using direct TCP connec-
tions would require 2000-3000 connected sockets on the
VMS host. This number of connections would consume to
many system resources. The problem was solved by
implementing a proxy server that provides data flow
between the VMS host and the SLCmicros. The proxy
server has two connections to each SLCmicro and a single
connection to each VMS host processes communicating to
the SLCmicros. This limits the number of VMS host TCP
connections to just the number of communicating pro-
cesses.

The proxy server works by appending a destination
header to the users data stream. This header has routing
information which allows the proxy server to forward the
data transfer to the correct destination. Proxy server
‘KEEPALIVE’ is also supported to allow an application to
check that the proxy server connection is complete and the

*Work supported by Department of Energy, contract
DE-AC03-76SF00515

24760-7803-4376-X/98/$10.00 1998 IEEE

Figure 1. SLC Control System Micro Data Communications

proxy server is operational.

IV. MESSAGE SERVICE

The SLC Message Service (SMS) is a message service
which securely delivers messages between the VMS host
and SLCmicros. It is a design goal to have TCP/IP com-
munications fit into the existing message service in a
transparent manner. Meeting this design goal means mak-
ing TCP behave like SLCNET (from the user’s perspec-
tive). This is tricky because SLCNET is a reliable,
connectionless, datagram protocol unlike TCP which is
stream based.

SMS works in a command/response mode. A VMS
host computer process issues a command and one or more
SLCmicros may optionally respond. A command is sent to
SLCmicro(s) by a host computer process (e.g. a SCP) and
the process then optionally waits for a reply.

Each SCP process on the VMS host is a “Single-Pro-
cess Client” which makes an active connection request to
a server. SMS supports any mixture of direct connections
to SLCmicros and connections via proxy servers.

The TCP/IP communications code is implemented as
a flexible MSG_IP layer below the existing SMS code.
This layering makes it possible for both new and existing
applications to call the MSG_IP layer directly for TCP/IP
services without going through SMS.

V. DATABASE DISTRIBUTION

DBEX is the database executive which communicates
database changes between the SLCmicros and the VMS
host. This VMS based stand-alone process is the source of
most of the network communications traffic in the SLC
Control System. DBEX also downloads the database to
the SLCmicros at boot time.

DBEX receives data from VMS mailboxes (data des-
tined for the SLCmicros), SLCNET interrupts (data from

the SLCmicros) and now TCP/IP interrupts (data from the
SLCmicros).

DBEX does not support any direct TCP/IP connection
to SLCmicros. Instead, all messages flow through the
proxy server. DBEX is a TCP/IP ‘client’ in that it initiates
connections to the proxy server by calling
MSG_IP_SEND which transparently makes the connec-
tion and sends a KEEPALIVE message. DBEX sends
these messages periodically to make sure that the proxy
server is alive. If the connection to the proxy server has
been broken, the MSG_IP layer automatically tries to
re-establish the connection. If a response to the KEE-
PALIVE message is not received within a given amount of
time, an error message is logged in the error log stating
that the proxy server is dead.

DBEX calls the MSG_IP layer to receive data using
VMS asynchronous I/O methods. Mailbox data is sent to
the SLCmicros using MSG_IP_SEND which performs
connection management and error logging transparent to
DBEX.

VI. ERROR LOGGING

ERR_INT (error interceptor) is the VMS based
stand-alone process which receives error messages from
SLCmicros, logs them into the error log file and places
them into the error message global section.

As was the case with DBEX updates, all error mes-
sages from TCP/IP SLCmicros flow through the proxy
server. ERR_INT is also a TCP/IP ‘client’ and uses the
MSG_IP layer to send KEEPALIVE messages to the
proxy server.

Error messages are received from the SLCmicros in a
similar manner to DBEX by using MSG_IP layer. When a
message is received, an event flag is set and ERR_INT
receives the data portion of the message. The message is
then logged and placed into the global section.

VII. PARANOIA

The VMS PARANOIA process is responsible for perform-
ing ‘check’ functions and for receiving unsolicited mes-
sages from the SLCmicros. Check functions are issued by
PARANOIA to check whether an SLCmicro is up and
communicating by sending a check request to the SLCmi-
cro and waiting for a reply. If no reply is received, the
SLCmicro is marked as off-line in the SLC database.
Check functions also tell the SLCmicro to update various
device information and send a reply back to the VMS host.

Unsolicited messages are service requests sent by
SLCmicros to the VMS host. Typically, PARANOIA
receives these requests and forwards them on to another
VMS process which provides the requested service.

As is the case with DBEX database updates, all
PARANOIA messages flow through the proxy server.
PARANOIA is also a TCP/IP ‘client’. KEEPALIVE mes-
sages are not needed because the check functions periodi-
cally send messages to the proxy server which insures that

DBEX

SCPs * n

ERR_INT

PARANOIA

Stand-alones
Multinet SLCNET

Fusion

Proxy SLCNET

Database

Messages in

Messages out SLCNET

VMS Host

SLCmicros

Network

Server

P
R

O
T

O
C

O
L

S
W

IT
C

H

SYS$QIO
MSG_IP
SMS

2477

the proxy server connection is kept open. Check function
messages are sent to a list of SLCmicros using SMS calls
instead of the MSG_IP layer. Check function replies and
unsolicited messages are received using the MSG_IP layer
methods described above.

VIII. DIAGNOSTICS AND TOOLS

There are SLCNET diagnostic tools provided to monitor
the activities of both the SLCNET network and the
SLCNET based SLCmicros. The tools which support the
SLCmicro itself are modified to use both protocols, or are
replaced with new TCP/IP functionality.

SLCmicro booting will be accomplished using the
standard TCP/IP BOOTP and TFTP protocols which are
supported by both TCP/IP stacks. The boot sequence is
built into the SLCmicro EPROM and run only at bootstrap
time to load and execute the image.

Standard ethernet and IP diagnostic tools are used to
trouble shoot network and low level communications
problems. These tools include ethernet protocol analyzers,
UNIX-style tools such as ping, tcpdump, and netstat.
Scripts have been developed for the protocol analyzers to
trap SMS and proxy server traffic for development and
debugging purposes.

SLCNET provides a means to acquire communica-
tions information from the SLCmicros which provide
users and technicians needed diagnostic data. This same
information is provided from a TCP/IP-based SLCmicro
using an embedded HTTP server. This server simply gath-
ers data from the ethernet driver, SNMP variables from
Fusion, image filename, boot date/time, and sends it to a
requestor. This information is displayed in a format simi-
lar to the SLCNET tool for consistency. Some of this
information is also written to the database to make it avail-
able for display by the SCP.

Commercial TCP/IP based debuggers have been
tested during the development phase of the project but the
familiarity of the SLC debugger still makes it a good
choice. It is possible to modify the SLC debugger to use
TCP/IP. No final decision has been made yet.

IX. SLCmicro

A new Multibus I single board computer from Radisys
was chosen as the replacement card for the current SLC
micro hardware. This new card, named the Skater card, or
EPC (Embedded PC), is actually a PC based computer
with an Ethernet interface on a Multibus I card. Fusion, a
third party TPC/IP stack was integrated with iRMX and
our code development system to provide a fast and main-
tainable communications interface for the SLCmicro.

A difficult part of the EPC upgrade was getting the
current SLCmicro image to boot and run on a PC-like
platform. The modifications to the memory map for the
actual SLCmicro image were substantial but everything
did have a place. The lack of a Non Maskable Interrupt
(NMI) on the EPC caused a re-design of the most critical

section of the SLCmicros code. This section of code
wakes up at 360hz to set up for the next beam crossing and
must do so very reliably.

The TCP/IP modifications to the SLCmicro code
were straight forward since nearly all the communication
needs are handled by a handful of routines. All of the I/O
routines were changed to reference a single set of routine
contained in one file, making a single place to modify how
a SLCmicro communicates, SLCNET or TCP/IP. A flag is
set at boot time specifying if this SLCmicro is a TCP/IP
SLCmicro or a SLCNET SLCmicro. If the flag is set to
SLCNET then message flow is as it has been for SLCNET.
If the flag is set to TCP/IP new code is used to setup the
TCP connections to the proxy server and then keep the
connections up. There are two connections to the proxy
server, one for database flow and one for messages and
error reports. These connections are kept for the life time
of the tasks or are re-connected when errors occur.

X. STATUS / EXPERIENCES

All major applications have been ported to TCP/IP in both
the VMS host and the SLCmicro and are being tested now.
Connections from the VMS host and the SLCmicro via the
proxy sever are operational and being tested using a mixed
system of SLCNET and TCP/IP SLCmicros. SLCNET is
still being used for timing data transfer, SLCmicro boot-
ing, and debugging.

A some issues came up during the upgrade process.
The SMS message service was designed with limited
functionality so that when a process had needs that were
not met, shortcuts were taken. An example would be,
asynchronous I/O completion where the solution was to
make VMS system calls directly instead of going through
the SMS layer to talk to SLCNET. This lack of good ‘lay-
ering’ made it necessary to modify individual applications
instead of just modifying a unified SMS layer. The lesson
learned is that good interface design and evolution saves a
lot of time in the long run.

Quite a bit of time was spent porting the TCP/IP stack
to our SLCmicro compilers and the iRMX operating sys-
tem. It was difficult to integrate this large body of source
code into our production system and then make it work
well. The porting of the SLCmicro image to the EPC card
was also a challenge due to the newness of the EPC card
and the constraints of PC-type hardware.

XI. REFERENCES

[1] M. Crane et.al.,Network Upgrade for the SLC: PEP-II
Network, PAC, Vancouver, BC, Canada, 1997.

XII. TRADEMARKS

*OpenVMS is a trademark of Digital Equipment Corporation.
*Alpha ia a trademark of Digital Equipment Corporation.
*Fusion is a trademark of Pacific Softworks, Inc.
*iRMX is a trademark of Radisys Corporation.

2478

