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One feature of today’s high energy physics experiments
is a detector with a large scale solenoid magnet for mea-
surement of transverse momenta of charged particles [1]-
[6]. Another is the demand for very high luminosity. To
meet luminosity demands accelerator designers need to put
insertion magnets close to the interaction point, even within
the detector solenoid field. Such designs have lower chro-
maticity, smaller peak beta functions, require less aperture
and basically allow tighter focussing of the beams. How-
ever, the insertion magnets become more difficult and com-
plicated to design since they are so closely coupled with the
detector magnetically and mechanically.

Only insertion magnet designs that use superconductors
or rare earth permanent magnets are practical within the
detector volume. Detector magnetic fields are typically 1.5
T and can overload any steel placed within them. Further-
more, steel within the solenoid field would generate large
perturbations of the fields that would be difficult to predict
or control accurately due to hysteresis. Permanent magnets
tend to have less interaction with the detector solenoid than
superconducting magnets. The fringe field of permanent
magnets rapidly falls off with radial distance, especially if
a large number of segments are used [7]. With supercon-
ductors there are typically no special coils to cancel the ex-
ternal fields, (though in principle that would be possible at
the cost of substantial radial space and complication), so
the problems of interaction with the solenoid are maximal.
In this paper we will only discuss the forces on supercon-
ducting magnets.

Superconducting magnets are often designed to support
large internal Lorentz forces generated by their self-fields.
However when immersed in the external field of a solenoid
the Lorentz forces can produce large net forces and torques
on a magnet as a whole. This leads to problems support-
ing the magnet, coupling the magnet to the helium vessel,
and supporting the cryostat. Support is critical because the
beam is particularly sensitive to motions of insertion mag-
nets due to the relatively high gradients and large beta func-
tions in the interaction region.

1 DETECTOR SOLENOID FIELD

We will only discuss detector solenoids which have a main
componentBz as well as a radial fringe field component
Br, but no azimuthal component. Both components can
produce substantial Lorentz forces on the accelerator mag-
net coils. In the body of the magnet coils, where the cur-
rent is only in the±z direction, the solenoidBz com-
ponent generates no force — only the radial component
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Figure 1: The calculated longitudinal and radial com-
ponents of the magnetic field of the CLEO solenoid are
plotted as a function of the distance from the interaction
point, for a constant radii equal to the average coil ra-
dius. Superimposed are the locations of the superconduct-
ing quadrupole magnets.

does. However both components can contribute to generate
forces in the coil ends.

As an example, consider the CLEO detector solenoid.
The calculatedBz andBr components are shown in Fig-
ure 1. Also shown in the plot are outlines of insertion
quadrupoles and concentrically wound dipoles which are
being built for the CESR phase III upgrade [2]. The for-
ward quadrupole magnet Q1 is entirely immersed in an al-
most uniform solenoid field with only a small radial com-
ponent near the outermost end. The second magnet coil Q2
starts where the radial component of the solenoid field is
near maximum andBz has dropped to about one-half its
central value.

2 SYMMETRIES

The symmetries of external electromagnetic forces acting
on dipole and quadrupole coils are shown in Figures 2—
5. Forces due to theBz andBr components are separately
plotted for clarity. One force vector is shown for the end of
each coil and one is shown for each magnet straight section.
Only near-side forces are shown in each view.

Dipole Symmetries

In Figure 2 we can see that from the longitudinal compo-
nent of the solenoid field a dipole coil experience forces
only at the coils ends. The resulting torque can be large
since the end forces are separated by the entire length of
the magnet. There will also be a net force to the extent
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Figure 2: Forces acting on a dipole magnet due only to the
Bz component of the solenoid field

Figure 3: Forces acting on a dipole magnet due only to the
Br component of the solenoid field

Figure 4: Forces acting on a quadrupole magnet due only
to theBz component of the solenoid field

Figure 5: Forces acting on a quadrupole magnet due only
to theBr component of the solenoid field

that Bz is different at the two ends. The direction of the
force is either parallel or anti-parallel to the field the dipole
generates.

In Figure 3 the dipole coils shown produce a dipole field
downward just as in Figure 2. One can see thatBr pro-
duces an upward force in the body which is centered at a
location determined by

∫
zBrdz. This force is only par-

tially canceled by the forces generated in the ends by the
Bz component shown in Figure 2. TheBr component will
also generate torques in the coil ends which partially cancel
each other to the extent thatBr is the same at the two ends.

Quadrupole Symmetries

Perfectly aligned quadrupole coils experience no net forces
or torques due toBz or Br. This is easily seen in Figure 4
and Figure 5. Generally the force on each coil part is can-
celed by an equal and opposite force on the corresponding
part of the opposing coil.

Even though there are no net forces or torques, the forces
can be important to the magnet design. The net solenoid
generated force on the ends may be∼ 1/3 as much as the
quadrupole self-field generated forces.1 But the symme-
try of the solenoid generated force on the ends is much
more unfavorable. The solenoid force tends to crush the
end of the coil while the internally generated forces attempt
the much more difficult operation forcing the coils into a
square shape. Adequate collar stiffness has to be provided
to resists this crushing force.

Misaligned Magnets

A substantial force can be generated for a quadrupole
asymmetrically placed with respect to nearby detector steel
(not shown). For example the Q2 magnet in Figure 1 is
surrounded by the CLEO solenoid yoke steel. Two dimen-
sional ANSYS calculations indicate that for a 3 mm offset
of the quadrupole center with respect to the hole in the pole,
an 1100 lb force is generated which tries to pull the mag-
net toward the steel. This force could be in any transverse
direction and would be proportional to the current in the
quadrupole coils. Similarly large forces can be generated
by asymmetrically adding large holes to the steel yoke even
if the quadrupole is perfectly positioned.

If the solenoid field is tilted with respect to the
quadrupole or dipole axes, or vice versa, many more forces
and torques are introduced.

3 CALCULATION OF FORCES

Direct 3D integration of the Lorentz force per unit vol-
ume over the coil geometry can provide values for the total
forces and torques on elements of the coils. Forces due to
Br are best obtained by this method, though the integra-
tion over the coil end geometry can be difficult. However,

1Typical solenoid fields are 1.5 T and typical quadrupole self-field is
∼ 5 T.
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within the approximation of~B = B0~ez whereB0 is con-
stant there are several simple analytic methods which can
be quite accurate in determining forces on the coil ends.

We start by calculating the forces on a single turn. In
this case there is no force on the wire in the straight portion
of the coil because the current and the solenoid field are
in the same direction — all the forces are generated in the
ends. The force on a infinitesimal length of a wired~s, with
currentI in the uniform field is:

d~F = IB0d~s × ~ez (1)

= IB0(−dx~ey + dy~ex) (2)

The total force on the coil end is obtained by integrating
d~F along the wire around the end. The integral is trivial
and the result is simply that the net force on the single wire
is ~F = IB0(−∆x~ey + ∆y~ex), where∆x(∆y) is the net
change in thex(y) coordinate of the wire. The actual path
the wire takes does not matter, only the net change in posi-
tion contributes to the total force on the end. Applying this
result to the coil as a whole we have that the total force on
a coil end is:

~F =
∑

wires

IB0(−∆x~ey + ∆y~ex) (3)

So the problem remains only to add up the contribu-
tions from all the wires. This is best done with a set of
x, y positions of all the wires. Such data can be put into a
spreadsheet and the resulting force immediately calculated
via equation 3.

Even more convenient would be a simple analytic ex-
pression. We will derive four. The first two are for a
quadrupole idealized as acos 2θ current sheet or as a30◦

sector current sheet. (To better represent the real coil the
radial dependence should be taken into account.) In the
former case the density of turns per unit anglen(θ) =
2N cos 2θ, whereN is the number of turns per coil. We
will express∆x and∆y in terms of the radius of the current
sheetR andθ. Assuming the coil is wound symmetrically
about a central post,∆x = R(cos (π

2 − θ) − cos θ) and
∆y = −∆x. The force on the coil may now be obtained
by integrating overθ from 0 toπ/4.

~Fcoil end = −2
3
NIB0R(~ey + ~ex) (4)

Fradial, coil end =
2
√

2
3

NIB0R (5)

which is the desired result for thecos 2θ quadrupole.
For example, a quadrupole withNI = 450, 000 ampere

turns, with a coil radius ofR = .092 m in a solenoid of
B0 = 1.5 T, the radial force on each pole is 58,548 N or
13,130 lbs.

For 30 degree sector idealization of a quadrupole the
density of turns is simply a constant:n(θ) = 6N/π. The
expressions∆x and∆y are the same so the force integral
is just

~Fcoil end = −B0NIR3(
√

3 − 1)
π

(~ey + ~ex)(6)

Fradial, coil end = −3
√

2(
√

3 − 1)
π

NIB0R (7)

The force is 9
2π (

√
3 − 1) = 1.05 times larger than for the

cos 2θ approximation.
Expressions for the force on dipole coils can be derived

in exactly the same manner using equation 3 and current
distributions for a dipole. For asin θ dipole coil idealiza-
tion we have thatn(θ) = N sin θ. For a symmetrically
wound dipole producing a horizontal field,∆x = 0 and
∆y = 2R sin θ. Replacing the summation with an integral
and integrating yields

~Fdipole coil = B0I

∫ π/2

0

N sin θ2R sin θ~ex (8)

=
π

2
B0RNI~ex (9)

For the 60 degree sector approximation for a dipole we
haven(θ) = 3N/π. This distribution yields

~Fdipole coil =
3
√

3
π

B0RNI~ex (10)

For illustration, consider a dipole at radius 0.144 m and
with NI = 28, 400 ampere turns, in a uniform solenoid
field of 1.5 T. Thesin θ idealization yields a horizontal
force per coil end of 9636 N or 2161 lbs, for total force
on the magnet end of 4,322 lbs. The 60 degrees sector ap-
proximation result is again only about 5% higher.

4 REFERENCES

[1] J.J.Welch, G.F. Dugan, E. Nordberg, D. Rice, Cornell Uni-
versity, The Superconducting Interaction Region Magnet
System for the CESR Phase III Upgrade, these proceedings
(PAC97)

[2] D.L. Rubin, CESR Status and Plans, Proc. 1995 Parti-
cle Accelerator Conference, (PAC95), vol. 1, pp 481f,
http://www.lns.cornell.edu/public/CBN/1995/cbn95-8.ps

[3] T.M. Taylor, Technological Aspects of the LEP Low-Beta
Insertions, IEEE Trans on Nucl. Sci. Vol NS-32, No. 5, Oc-
tober 1985

[4] W.W. Ash, et. al., Superconducting Final Focus for the
SLC Linear Collider, Proc. 14th Int. Cryogenic Engineering
Conf., June 1992

[5] K. Tsuchiya, T.M. Kobayashi, T. Haruyama, Y. Ajima, Y.
Doi, KEK, Superconducting Magnets in the Interaction Re-
gion of the KEK B-Factory, proc. 13th Intl. Conf. Magnet
Tech., Victoria Canada, Sept 1993

[6] C.E. Taylor, S. Caspi, and N. Saho,A Final-Focus Magnet
for PEP-II, LBL, report LBL-35421, proc. Applied Super-
conductivity Conference, Boston MA, October 1994.

[7] K. Halbach,Design of Permanent Multipole Magnets with
Oriented Rare Earth Cobalt Material, Nucl. Instr. and Meth-
ods, vol 169, pp 1, (1980)

3382


