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Abstract

The effects of incoherent space charge forces on the fast
head-tail instability are studied numerically. It is found that
incoherent space charge forces can dramatically increase
the threshold current for a fixed wall impedance.

1 PHYSICAL MODEL AND SIMULATION
ALGORITHM

For the purposes of beam dynamics one transverse and the
longitudinal degrees of freedom are considered. Letθ de-
note the machine azimuth, which increases by2π each turn
and will be used as the time-like variable. The time is de-
noted byt andω0 is the angular revolution frequency of
a synchronous particle. Consider a single particle and let
τ(θ) = t − θ/ω0 denote the time delay between this par-
ticle reachingθ and the synchronous particle reachingθ.
The longitudinal equation of motion for a single particle is
approximated as

d2τ

d2θ
+ Q2

sτ = 0, (1)

whereQs is the synchrotron tune. The single particle equa-
tion of motion for the transverse degree of freedomx is
approximated as

d2x

d2θ
= −Q2

xx + Cscρ(θ, τ)(x− < x(θ, τ) >)

+

τ∫

−T

dτ ′W (τ − τ ′)ρ(θ, τ ′) < x(θ, τ ′) > . (2)

In equation (2)Qx is the bare betatron,Csc ≥ 0 character-
izes the peak strength of the incoherent space charge force,
andρ(θ, τ) is the line density of the particles which van-
ishes for|τ | > T , the half length of the bunch. The trans-
verse center of the beam as a function of azimuth and de-
lay is < x(θ, τ) >, and the causal coherent forces due to
wall impedances are characterized by the wake potential
W (τ). Extending the model to include chromaticity and
long range wake forces is straightforward, but will not be
considered here.

Equations (1) and (2) are solved by particle tracking. The
bunch is modeled asN interacting macro-particles. The
equations of motion forkth macro-particle are taken to be

d2τk

d2θ
= −Q2

sτk (3)
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d2xk

d2θ
= −Q2

xxk +
Csc

N

N∑
j=1

(xk − xj)λ(τk − τj)

+
1
N

N∑
j=1

xjŴ (τk − τj). (4)

In equation 4 the new functionsλ(τ) and Ŵ (τ) are in-
troduced to smooth out the particle-particle forces. If one
takes the limitN → ∞ and then takes the limits ofλ(τ)
going to a delta function and̂W (τ) → W (τ), equation (2)
is recovered.

The number of macro-particles is controlled using the
parametern`. The initial longitudinal variables,τk, and
vk = dτk/(Qsdθ), are selected by considering the sub-
set of lattice points(Tk, Vk) = ((kτ + 1/2)/n`, (kv +
1/2)/n`), with kτ andkv integers, which are inside the
unit circle. The initial longitudinal coordinates of a macro
particle are derived via

(τk, vk) = L(Tk, Vk)
(
1 − (1 − R2

k)1/(1+µ)
)1/2

/Rk,

where the parameterµ determines the bunch shape and
R2

k = T 2
k + V 2

k . The smoothed density in longitudinal
phase space is proportional to(L2 − τ2 − v2)µ, and results
in a line density∝ (L2 − τ2)µ+1/2. During the simula-
tion the longitudinal variables were updated once per turn
using a rotation with angle2πQs. Figure 1 illustrates the
selection of longitudinal coordinates.

The initial values of the transverse variablesxk and
pk = dxk/dθ were obtained using a random number gener-
ator. The transverse dynamics consists of two parts, single
particle dynamics and multiparticle dynamics. The scheme
involves a single particle update followed by a multiparticle
update and is repeatedM times per turn. The application of
collective forces once per turn, as is usually done in lepton
machines [1], is not sufficient since space charge tune shifts
are large. The single particle update is given by a trans-
fer matrix with a bare betatron phase advance2πQx/M .
The multiparticle update consists of a kick from the space
charge and wake forces. The space charge kick is given by

Fk = Ĉsc

N∑
j=1

(xk − xj)λ(τk − τj), (5)

whereĈsc = 2πCsc/NM . The kick due to the wake po-
tential is

Fk =
2π

NM

N∑
j=1

xjŴ (τk − τj). (6)
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Figure 1: Initial longitudinal coordinates forn` = 10 and
µ = 1. There are316 ≈ πn2

` macro-particles.

On the surface, equations (5) and (6) appear to require
O(N2) operations to obtain the kicks for allN macroparti-
cles. This would make simulations with largeN untenable.
For appropriate choices ofλ(τ) andŴ (τ) the operation
count drops toO(N log(N)). The trick is to generalize the
phasor technique which is usually employed to retain the
cumulative effects of multiple passages through a resonant
structure[2].

The smoothing functions

λ(τ) = exp(−α|τ |),
where

∫
λdτ = 2/α = τe is the equivalent duration of

λ(τ), and

λ2(τ) = (1 + α|τ |) exp(−α|τ |)
with 4/α = τe can be summed efficiently. The algorithm
for λ2(τ) is an obvious generalization of the algorithm for
λ(τ), which is presented in detail.

Sort the values ofτj so thatτj ≤ τj+1, which is an
O(N log N) process with standard algorithms[3]. Equa-
tion (5) is given by

Fk/Ĉsc = xkS1−k − S2−k + xkS1+
k − S2+

k , (7)

where

S1−k =
k∑

j=1

eα(τj − τk),

S2−k =
k∑

j=1

xje
α(τj − τk),

S1+
k =

N∑
j=k+1

eα(τk − τj),

S2+
k =

N∑
j=k+1

xje
α(τk − τj). (8)

To calculate the sums one starts withS+
N = 0 , S−

0 = 0 and
uses

S1−k+1 = eα(τk − τk+1)S1−k + 1,

S2−k+1 = eα(τk − τk+1)S2−k + xk+1,

S1+
k−1 = eα(τk−1 − τk)(S1+

k + 1),

S2+
k−1 = eα(τk−1 − τk)(S2+

k + xk), (9)

Note that these recurrence relations are stable and that the
kicks for all N particles requireO(N) calculations after
the particles have been sorted in arrival time. The sorting
procedure is done when theτk s are updated, once per turn.

Next, consider the kick due to the transverse wake field.
A smoothed version of the step function wake given by
W (τ) = W for τ > 0 andW (τ) = 0 for τ < 0 is

Ŵ (τ) = CW

τ∫
−∞

λ(τ ′)dτ ′, (10)

whereCW is a constant andλ(t) = exp(−α|τ |), as before.
Adjusting the constant so that̂W (τ) → W as τ → ∞
yields

Fk =
2πW

NM

[
S0−k − S2−k /2 + S2+

k /2
]
, (11)

where

S0−k =
k∑

j=1

xj .

For a resonator impedance with resonant frequencyωr and
quality factorQr the wake kick on particlek is given by

Fk =
k∑

j=1

xjWr sin[ω̃(τk − τj)]e − ωr(τk − τj)/2Qr ,

(12)
whereω̃ = ωr

√
1 − 1/4Q2

r. Usingexp(iφ) = cos(φ) +
i sin(φ) a complex sum similar toS2−k is obtained.

2 SIMULATION RESULTS

The algorithm described in the previous section has been
implemented in fortran code. Results with the smooth-
ing functionλ2(τ) and the step function wake will be pre-
sented. Values ofn`, µ, Qs, τe, Qx, M , W , and the peak
value of the incoherent space charge tune shift∆Qsc were
chosen. For the results presented hereM = 24, Qx = 2.9,
andQs = 0.01 → 0.1.

The simulations were allowed to continue until the be-
tatron oscillation showed a clear exponential growth rate.
The growth rate of the exponential was identified as the
growth rate of the most unstable mode. The values of the
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Figure 2: Im(Qx/Qs) versusτe/T with µ = 1 and
∆Qsc/Qs = 20 for various values ofn`: n` = 25, solid
line; n` = 50, long dash;n` = 100, short dash. The value
of the step function wake was five times larger than the
threshold value with∆Qsc = 0.

growth rate were insensitive to the seed value of the ran-
dom number generator and were the same in both single
and double precision.

Figure 2 shows the growth rate of the most unstable
mode as a function ofτe/T for a system which would be
highly unstable in the absence of space charge forces. From
the figure the best values ofτe were0.05, 0.02 and0.01 for
n` = 25, 50, and 100, respectively.

Figure 3 showsIm(Qx/Qs) versus∆Qsc/qs. While
there is a noticeable rise in growth rate after the initial de-
cayIm(Qx/Qs) stays below 1% of its value in the absence
of space charge. A threshold value of∆Qsc/Qs = 2 is in-
ferred from this plot

Figure 4 is the main result. The threshold value of the
wake potential increases with space charge tune shift. Re-
sults for smooth(µ = 1) and boxcar(µ = −1/2) line
densities are similar. If real beams behave in this way the
fast head tail instability will rarely, if ever, be seen in low
energy hadron machines.
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Figure 3: Im(Qx/Qs) versus∆Qsc/Qs with µ = 1 for
various values ofn`.: n` = 25, solid line;n` = 50, long
dash;n` = 100, short dash. The value of the step function
wake was 2.5 times larger than the threshold value with
∆Qsc = 0.
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Figure 4: Threshold wake in units of the threshold wake
for ∆Qsc = 0 versus∆Qsc/Qs for different line densities:
µ = 1, solid line;µ = −1/2, long dash.
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