
LONGITUDINAL BUNCHED-BEAM INSTABILITIES
IN A BARRIER RF SYSTEM

Y. H. Chin and H. Tsutsui, KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305, Japan

Abstract

This paper deals with theoretical and numerical analysis of
longitudinal instabilities in a barrier RF system. A theory
was developed to formulate using the Vlasov equation and
the synchrotron- energy mode expansion. The result can
be expressed in a form of eigenvalue matrix. A simulation
code ECLIPS (Evaluation Code for Longitudinal
Instabilities in a Proton Synchrotron) was also developed.
Both were applied to the JHF 50GeV proton synchrotron
at injection. They show excellent agreements. The results
demonstrate that the microwave and the negative mass
instabilities in a bunched beam can be explained by mode-
coupling instabilities.

1  INTRODUCTION

The barrier RF system[1] has been proposed as a new
method to achieve a high beam current by creating a very
flat bunched beam. Unlike in a conventional RF system,
particles are drifting freely between two discreet single-
turn RF waveforms at which they suddenly receive
repelling forces to turn around. The particle trajectory
results in an squarish shape in the phase space. The bunch
length can be easily controlled by changing the distance
between two barriers. The synchrotron motion tends to
become very slow (of the order of 10 Hz at the JHF[2]),
while its frequency spread becomes comparable  to the
synchrotron frequency itself. An idea of higher harmonic
cavity is aimed to create a similar RF environment[3].

The collective stability of the beam due to wake
fields in a barrier RF system may resemble that in a
coasting beam, provided that the wave length of the beam
density modulation is shorter than the bunch length and
the instability growth is much faster than the synchrotron
oscillation. Such a coasting beam approximation has
beam made for years to allow the usage of  the Keil-
Schnell-Boussard criterion to a long proton bunch. It is,
however, not clear what should replace the Keil-Schnell-
Boussard criterion when the coasting beam approximation
is inappropriate in a bunched-beam.

A more direct approach, based on the bunched-beam
mode expansion of the phase space density, has been
proposed by Sacherer[4]. This is an attempt to explain the
microwave and negative mass instabilities in a bunched
beam in terms of couplings between different synchrotron
modes. The mode-coupling offers a possible explanation
for existence of the threshold. However, his formalism
lacks the Landau damping effect due to a synchrotron
frequency spread (or energy spread), which plays an
essential role in a coasting beam to set the threshold.

Therefore, his mode-coupling theory fails to make a
transition to the coasting beam theory.

Our goal is to construct a theory proper bunched-
beam longitudinal instabilities in a barrier RF system
with the Landau damping effect included and without the
coasting beam approximation. The correct treatment of
the synchrotron frequency spread in the squarish barrier
bucket can be done by describing the synchrotron motion
using action-angle variables[5]. From numerical
comparisons between the theory and simulations, we can
show that the coasting beam instabilities are indeed
transformed to mode-coupling instability in a long bunch.

2  VLASOV ANALYSIS

In this section, we briefly outline the formalism. The
phase space particle trajectory in the barrier bucket is
illustrated in Fig. 1:
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Figure 1: Phase space trajectory in a barrier bucket.

where ∆E  is the energy deviation from the average energy
E0 , ω 0  is the revolution frequency, and φ  is the relative

position of particle in a bunch in angle. We use θ , the
angular position of particle in a ring, as an independent
variable. Let us approximate this trajectory by a square for
simplicity. The constant of motion (action I ) is the area
confined by the square trajectory:
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The corresponding angle variable is the phase of the
particle oscillation around the trajectory:
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where η  is the slippage factor, βc  is particle velocity and
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is the synchrotron frequency proportional toI .
The evolution of phase space distribution f I( , , )ψ θ

obeys the Vlasov equation:
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where a prime means taking the derivative with respect
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toθ . We solve the above equation by the perturbation
technique. SinceI  and ψ  are the canonical variables, the

perturbed part of f I( , , )ψ θ  can be factorized to separate

functions for each of them. The angle dependent function
can be Fourier expanded due to the periodicity with period
2π . The phase space distribution can be thus written as
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Here, the integer m  stands for synchrotron mode number.
The line charge density ρ φ( ) corresponding to the

perturbed part of the phase space distribution is given by
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The upper and lower terms in the bracket correspond to
odd and even integers of m, respectively. Figure 2
showsρ φ( )for the lowest three synchrotron modes.
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Figure: 2  The line charge density ρ φ( ) for m=1 (dipole),

m=2 (quadrupole) and m=3 (sextupole) modes.

Using the impedanceZ( / )ω ω 0  and the Fourier

transform ofρ φ( ), ˜ ( )ρ ν , we can write

′ = − + +

× − + −
=−∞

∞

∑I e N w Z p p

i p i

p

2
2

φ
π

ρ

φ θ

max sgn( ) ( )˜ ( )

exp( ( ) )

Ω Ω

Ω Ω
        (7)

ψ ν' ( )= s I         (8)

where N  is the number of particles in a bunch.
Substitution of Eqs. (5), (7) and (8) into Eq. (4) yields an
integral equation for f Im ( ):
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whereIb  is the circulating current and
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The same rule as in Eq. (6) is applied to Eq. (10).
Let us solve Eq. (9) by expanding the unknown

function f Im ( ) using a complete set of orthogonal

polynomials The choice of appropriate polynomials
depends on the unperturbed distribution f I0 ( )  (the initial

energy distribution). For a Gaussian distribution, it is the
Laguerre polynomials. After lengthy calculation, Eq. (9)
transforms to a matrix eigenvalue equation for Ω  and an
expansion coefficient vector a :
ΩI a N a M a⋅ − ⋅ = ⋅        (11)
where I  is the unit matrix and the elements of other
matrixes are explicitly given by

N m
E

E
Lnl

mk

rms

mn kl= −






πη
φ β

δ
2 2

0max

∆
      (12)

L xe L x L x dxkl
x

k l= −
∞

∫ ( ) ( )
0

      (13)

M im
I

E E E e
i

Z p

p
C p C p

nl
mk b

rms

n m
k l

p
m n

= − ( )

× +
+

+ +

−

=−∞

∞

∑

2
5 2

0 0
0 0π φ

δ δ/
max

*

/ /

( )
( ) ( )

∆

Ω
Ω

Ω Ω
       (14)

Here,L xk ( ) is the Laguerre polynomials.

3  NUMERICAL EXAMPLES

Table 1 summaries the main parameters of JHF 50 GeV
proton synchrotron at injection. The resonator model is
used to characterize the impedance of the ring.

Table 1: Main parameters of JHF 50 GeV ring.

Figure 3 shows the coherent synchrotron mode frequencies
(normalized by Ω0 ) and the growth rate as a function of

the circulating current. Several modes start to couple at
about 5A, signaling the onset of instabilities. Figure 4
shows the time evolution of the rms energy spread at 5A
for various initial energy spread. One can see that the
energy distribution stops to blow up when the initial
energy spread is about 0.2%, in a good agreement with
the analytical result (a slow increase of the energy spread
attributes to non-compensation of the energy loss due to
wake fields in simulations). Though not shown here, the
phase space plot shows an uniform particle density after a
blow-up of the energy spread. This is a signature of  the
microwave instability.  The 5A threshold for circulating
current is lower than the design value of 6.65A, which
suggests a need of reducing the impedance.

Injection energy, EI 3 GeV

Circumference, C 1442 m
Design circulating current, Ib 6.65 A

Slippage factor, η -0.05
Half bunch length in angle, φmax 150 degree

RMS energy spread, ∆E E
rms

/ 0( ) 0.212%

RMS synchrotron frequency, Ω0 2/ π 16.96 Hz

Impedance of the ring at peak, Rs 10 kΩ
Resonant frequency, fr 3.4 MHz

Q-value 1

1546



       
Figure 3: Coherent synchrotron mode frequencies and the
growth rate versus the circulating current (theory).

      
Figure 4: Time evolution of the rms energy spread for
various initial spread (simulations).

Next, let us apply to a pure inductive impedance. The
inductance is chosen to be equal to that of the resonator
model at low frequency. The coasting beam theory
predicts the excitation of negative mass instability. Figure
5 shows the coherent synchrotron mode frequencies and
the growth rate versus the circulating current. Many
synchrotron modes couple simultaneously with their
negative mode partners (they are mirror images with
respect to the Ω =0 line) at about 9A. The growth rate
increases very rapidly after the mode-couplings. Figure 6
shows the time evolution of the rms energy spread at 9A
for various initial energy spread. The threshold of energy
spread appears to be around 0.21%, in a good agreement
with the analytical result again. Figure 7 shows the phase
space distribution after the instability ceased for the initial
energy spread of 0.05%. Strong concentration of particles
can be observed at several places as expected for the
negative mass instability. According to the coasting beam
theory, the negative mass instability has the same
threshold for all coasting beam modes “n” for a pure
inductive impedance. This behavior agrees with the
simultaneous onset of mode-coupling instabilities of all
synchrotron modes as seen in Fig. 5. Another important
point is that the real part of mode frequencies vanishes
after mode-couplings. Namely, the modes stop moving in
phase space, while they grow. This behavior corresponds

to the characteristic of the negative mass instability that
the crests of beam density are fixed in the beam frame.

       
Figure 5: Coherent synchrotron mode frequencies and the
growth rate for the inductive impedance (theory).

      
Figure 6: Time evolution of the rms energy spread for
various initial spread for the inductive impedance
(simulations).

      
Figure 7: The phase space distribution after the instability
ceased for the initial energy spread of 0.05%
(simulations).
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