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Abstract Therefore, his mode-coupling theory fails to make a
transition to the coasting beam theory.
This paper deals with theoretical and numerical analysis of  Qur goal is to construct a theory progmmched-
longitudinal instabilities in a barrier RF systemti#eory peam longitudinal instabilities in Barrier RF system
was developed to formulate using the Vlasov equation aggith the Landaudampingeffect included andvithout the
the synchrotronenergy modeexpansion. The result can coasting beam approximation. Tkerrect treatment of
be expressed in a form of eigenvalue matrix. A simulatiome Synchrotrorfrequency Spread inhe Squarish barrier
code ECLIPS (Evaluation Code for Longitudinal pucket can be done by describing the synchratmotion
Instabilities in a Proton Synchrotron) was adﬂyeloped. using action-ang|e Variab|es[5]_ From numerical
Both were applied tashe JHF 50GeV proton synchrotron comparisons between the theanydsimulations, we can
at injection. They show excellent agreements. The resuiow that the coasting beam instabilitiese indeed
demonstratehat the microwaveand the negative mass transformed to mode-coupling instability in a long bunch.
instabilities in a bunched beam can be explainecthbge-
coupling instabilities. 2 VLASOV ANALYSIS

In this section, we briefly outline the formalism. The

1 INTRODUCTION . . : . .
phase space particle trajectory in tharrier bucket is
The barrier RF system[1] has beeproposed as a new jjlustrated in Fig. 1:

method to achieve a high beam current by creatingna

flat bunched beam. Unlike in a conventional Rfstem, W=AE/, f(w,¢,0)

particlesare drifting freely betweertwo discreetsingle- Winax

turn RF waveforms at which theguddenly receive ¥ >\|
repelling forces to turn around. The particldrajectory \4 J >
results in an squarish shape in the phase spaceburioh

length can beeasily controlled by changing thdistance  ~®nax Winax Prax

between two barriers. The synchrotromtion tends to
become very slow (of therder of 10 Hz athe JHF[2]),

while its frequency spreasiecomes comparable to thewhereAE is the energy deviation from the average ener
synchrotronfrequencyitself. An idea ofhigher harmonic 9y g 9y

cavity is aimed to create a similar RF environment[3]. B " % is the re.volu.tlon frequen.cy, ang is therelative

The collective stability of the beardue to wake POSition of particle in a bunch in angle. We u8e the
fields in a barrier RFsystem may resemblthat in a angularposmon ofpartl_cle in a ring, as amdependent
coasting beam, provided that the wave length ofbtem vgrlaplg. Let us approximate th|_s trajectory py a square for
density modulation is shorter than the bunch length atimPlicity. The constant of motion (actioh) is thearea
the instability growth is much faster than the synchrotrofonfined by the square trajectory:
oscillation. Such a coasting beam approximation haB:—J.de(ngqomameax (1)
beammadefor years to allow the usage of théeil- 2n n , )
Schnell-Boussard criterion tolang proton bunch. It is, "€ corresponding angle variable is the phase of the

however,not clearwhat shouldreplacethe Keil-Schnell- Particle oscillation around the trajectory:

Figure 1: Phase space trajectory in a barrier bucket.

2
Boussard criterion when the coasting beam approximatiop = wt = _iz gﬂ ot )
is inappropriate in a bunched-beam. B 2¢..E

A more direct approacthased orthe bunched-beam wheren is the slippage factotfc is particle velocity and
mode expansion of the phasgpacedensity, hasbeen n 0 m f
proposed by Sacherer[4]. This is an attempt to explain the, = v (l)w, = ——5 B%WE I (3)
microwaveandnegative mass instabilities in aunched B B Boa
beam in terms of couplingsetween different synchrotron is the synchrotron frequency proportional to

modes. The mode-coupling offerspassible explanation The evolution of phasspacedistributionf(l,y,6)
for existence of the threshold. However, his formalisnobeys the Vlasov equation:
lacks theLandau damping effect due to asynchrotron ﬁﬂl/'i*' X o @)

frequency spreador energy spread)which plays an g8 oy a
essential role in a coasting beam to set the thresholghere aprime means taking thderivative with respect

0-7803-4376-X/98/$10.00 O 1998 |EEE 1545



to8. We solve theabove equation by the perturbationenergy distribution). For a Gaussian distribution, it is the

technique. Sincé andy arethe canonical variables, the Laguerrepolynomials. After lengthy calculation, Eqg. (9)
perturbedpart of f(1,,6) can befactorized to separate transforms to a matrix eigenvalue equation f@rand an

functions for each of them. The anglependentunction
can be Fourier expanded due to the periodieith period
2. The phase space distribution can be thus written as

f(1,0,0) = (1) + ifm(l)exp(imlﬂ)exp(-ifl@) (5)

m=—co

Here, the integem stands for synchrotromodenumber.
The line charge density p(¢) corresponding to the

perturbed part of the phase space distribution is given byL _

5 Esm(m
Q) =5— DZ

)D o
os (6)
— m=—oo oSl m——
(Pm A

(p n)gqf (hdl
m P 2

The upperandlower terms in thebracket correspond to
odd and even integers of m,
showsp(g)for the lowest three synchrotron modes.

p(®) p(®) P(®)
| I | |
| r | | T | [
| | o ] L0 L
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m=1(dipole) m=2 (quadrupole) m=3 (sextupole)

Figure: 2 The line charge densipfg) for m=1 (dipole),
m=2 (quadrupole) and m=3 (sextupole) modes.

Using the impedanc&(w/w,) and the Fourier
transform ofo(¢), p(v), we can write

I'=-€’N %Faxsgn(w) piz( p+Q)p(p+Q)

(7)
xexpEi(p+Qy-iQ0o)
' =v(l) (8)
where N is the number of particles in a bunch.

Substitution of Egs. (5), (7) and (8) into Eq. (4) yields an Q-value

integral equation forf_(1):

@-mv,(1)f. (1) =i 22m 5 O (') "mJ’f (1d’
T ©
- Z(p+Q)
——C, Q)C Q
sz_w 0+ 0 m(P+Q)C (p+Q)
wherel, is the circulating current and
2, 01 cOS(4¢na )0
" OSiN(A¢he)
C(a) = s - (10)

. 0,2 o
The same rule as in Eq. (6) is applied to Eqg. (10).
Let us solve Eg. (9) byexpandingthe unknown
function f_(I) using a complete set of orthogonal

polynomials The choice of appropriatepolynomials
depends orthe unperturbedlistribution f,(1) (theinitial

where |

respectively. Figure 2

expansion coefficient vecta.:

Qla-NE=MR& (11)
is the unit matrixand the elements ofother
matrixes are explicitly given by

_m  UAED

an \/>§0maxﬁ Q_E mn (12)
I&e‘* L (X)L, (x)dx (13)
Mg = -im— (A\EE/ID ] 78,8
Brrex Es) s Eo (14)
s 2P+ 0L ovC (p+Q)
= PFQ

Here,L, (x)is the Laguerre polynomials.

3 NUMERICAL EXAMPLES

Table 1 summaries the magarameters o§HF 50 GeV
proton synchrotron at injection. The resonator model is
used to characterize the impedance of the ring.

Table 1: Main parameters of JHF 50 GeV ring.

Injection energy E, 3 GeV
CircumferenceC 1442 m
Design circulating currentl,, 6.65 A
Slippage factorp -0.05
Half bunch length in anglep,, 150 degree
RMS energy spreadAE/ E,) 0.212%
RMS synchrotron frequency?, / 2t 16.96 Hz
Impedance of the ring at peak, 10 kQ
Resonant frequencyf, 3.4 MHz
1

Figure 3 shows the coherent synchrotron mode frequencies
(normalized byQ,) andthe growthrate as dunction of

the circulating current. Several modssrt to couple at
about 5A, signaling the onset of instabilities. Figure 4
shows the time evolution of the rresmergyspread at 5A
for various initial energy spread. One can stmt the
energydistribution stops to blow up when the initial
energyspread isabout 0.2%, in agood agreementvith

the analytical result (a slomcrease othe energyspread
attributes to non-compensation of theergyloss due to
wake fields in simulations). Though not shown here, the
phase space plot shows an uniform particle deadigy a
blow-up of theenergy spreadlhis is a signature of the
microwaveinstability. The 5Athreshold for circulating
current is lower than the design value @65A, which
suggests a need of reducing the impedance.
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Figure 3: Coherent synchrotranode frequencies and the
growth rate versus the circulating current (theory).
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Figure 4: Time evolution of the rmenergyspread for
various initial spread (simulations).
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Next, let us apply to g@ure inductive impedance. The
inductance ischosen to bequal tothat of theresonator
model at low frequency. The coasting beam theory

to the characteristic othe negative mass instability that
the crests of beam density are fixed in the beam frame.
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Figure 5: Coherent synchrotranode frequencies and the
growth rate for the inductive impedance (theory).
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Figure 6: Time evolution of the rmenergyspread for
various initial spread for the inductive impedance
(simulations).
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predicts the excitation of negative mass instability. Figure

5 shows the coherent synchrotrotode frequencies and

the growthrate versus the circulating current. Many

synchrotron modes couple simultaneously witteir
negative mode partner@hey are mirror images with
respect tothe Q=0 line) at about 9A. The growttate
increases very rapidly afténe mode-couplings. Figure 6
shows the time evolution of the rmesiergyspread at 9A
for various initial energy spread. The thresholdesfergy
spread appears to be arouh@1%, in agood agreement
with the analytical result again. Figure 7 shows jthase
space distribution after the instability ceased forittigal

0.0050

0.0025

0.0000

AE/E

—0.0025

—0.0050

time (usec)

energy spread of 0.05%. Strong concentration of particl

can be observed at several placesesgectedfor the %slgure 7: The phase space distribution after the instability

negative mass instability. According to the coastiegm cgaseltd for the initial energy spread of 0.05%
theory, the negative mass instability has thame (simulations).
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