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Abstract

We study the space-charge effects on the stability of low
energy synchrotron accelerators with a Gaussian beam
distribution.  We show that the tune shift is not uniform
throughout the beam, but decreases as a function of
particle amplitude.  The amplitude dependance leads to
an equation for the region of beam instability due to
integer resonance.

1  INTRODUCTION

One of the major concerns of beam dynamics and
thus beam quality for a synchrotron in low energies
(such as low energy injector/booster and medical proton
therapy) is the space charge effect.  In the non-
relativistic, low energy regime the repulsive space charge
electric force is not cancelled out by the magnetic force,
thus yielding a substantial modification in beam
dynamics, such as the tune shift [1].  In fact, it has been
believed that the space charge effect increases the
emittance.  A rule of thumb on how to avoid or contain
this deliterious effect is to avoid any conditions where
the shifted tune might overlap integer (or other rational)
resonances.  Experimental observations, however, show
that in many cases even though the beam has evidently
crossed such a resonance, the beam is not destroyed.
This has remained a mystery and some attempts at
understanding the effects have been tried [2,3,4] but to
no clear understanding to date.  In this paper we address
this problem by looking into the detailed kinetic radial
distribution with the employment of our newly
developed self-consistent space-charge PIC code [5].

In their 1958 paper on the theory of the alternating
gradient synchrotron[6] E.D. Courant and H.S. Snyder
show that magnet imperfections, and other non-linear
effects, produce two classes of instabilities.  The first
occurs when either transverse beam tune (number of
transverse oscillations the beam particles make around
the design orbit per synchrotron revolution) is equal to a
rational number (no=n/m, where n and m are integers).
The second class of instabilities occur when the sum of
multiples of the transverse tunes is equal to an integer
value (nnxo + mnyo = p).  In their paper, Courant and
Snyder used the machine tunes, or the number of
transverse oscillations produced by a particle’s
interaction with only the synchrotron magnets.  For low
energy/high intensity beams the particle trajectory will
also be influenced by the beam’s self-fields, or space-
charge.  For a uniform density beam the space-charge
produces a uniform shift in the beam tune. R.C.

Davidson[7] calculates the average tune in a circular,
uniform density beam with space-charge as
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where S is the machine circumference, e is the
unnormalized beam emittance, and K is the self-field
perveance (K Iem c=

- -2 1 3[ ]gb ).

For small K, the tune can be written in terms of the
machine tune and a space-charge tune-shift,

 n n n= -o D ,   where Dn e= -
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Eqs. (1) and (2) were derived for a uniform density
beam.  To expand it to a Gaussian beam, the emittance is
generally replaced by the rms emittance.  Since the
space-charge has been shown to produce a uniform shift
in tune, it has been preported that the instabilities shown
by Courant and Snyder occur at the new shifted tunes
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Baartman refutes this notion in his paper[3].  He
proposes that the resonance is associated with the
incoherent tune, which can be depressed beyond the
integral value by a fractional amount determined by the
machine design.  The resonance occurs at

n no mkC n
m- =D , (4)

where Cmk is a function of the machine design.
In each of the prior studies the tune-shift is

considered uniform over the beam.  W.T. Weng[4]
briefly shows that this is not the case, the tune-shift, for a
non-uniform beam is dependent upon the individual
particle amplitude.

2   AMPLITUDE DEPENDENCE OF TUNE SHIFT

Consider a long, circular proton beam with a Gaussian

radial density profile,r r( )r eo
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where b and g are the relativistic factors, and eo is the
permittivity constant (eo = 8.8541x10-12 Fm-1).

The Lorentz force will be radial with a magnitude
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For a typical synchrotron this space-charge force is
a perturbation to the force of the synchrotron magnets.
The equation of motion for a beam particle can be
written as
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where k(s) is the synchrotron magnetic gradient and k(s)
is the space-charge component given by
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The largest space-charge perturbation occurs for small
amplitude particles (small average r) where k(s) is
independant of r.  The tuneshift in this region is [6]
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where bcs is the Courant-Snyder amplitude function.
Approximating the integral yields
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where b cs
 is the average Courant Snyder amplitude

function around the synchrotron.  Defining the beam
current (I) and the normalized beam emittance(en) as

I c ao n cs= b r p e gb b2    and  =  
1

4
   a   ,    2 -1 the maximum

tune shift can be written as
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Larger amplitude particles experience a smaller
space charge force and therefore a smaller tuneshift.  The
general equation for the particle tuneshift as a function of
particle amplitude (A) is found to be
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where h is independent of A, en, and I but is dependant
on the synchrotron design and is proportional to bg with
a proportional constant of order unity.  We note that
since the beam will have a significant distribution in
tune, it is not resonable to assume that the resonant
instabilities are determined by the average beam tune,
but by the tunes of the individual particles.

3   METHOD OF INVESTIGATION

To study the cause of instabilities we have
developed a self-consistent computer model[5].  It tracks
a set of macro-particles around the synchrotron lattice in
full 6-dimensional phase space.  For a long, lattice
dominated beam with slowly varying radial profile the
space-charge force has only a radial component and can

be calculated using a two dimensional algorithm.  The
synchrotron magnets are applied as thin-elements as
described by Schachinger and Talman[8].  The tracking
method follows.

3.1  Regions without synchrotron magnets

Each particle is advanced in space a timestep dt,
according to the equations
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where x, y, and s are the horizontal, vertical, and
longitudinal positions.  The space-charge electric field at
each particle is calculated using a standard 2-D PIC
algorithm and the particle momentums are advanced as

b b
g

b b
g

b b
b

g
b b

x
n

x
n x

y
n

y
n y

s
n

s
n s

n

x
n

x y
n

y

E
dt

E
dt

E E dt

+

+

+

= +

= +

= + +

1
3

1
3

1
3

( ) .

  (15)

3.2  Regions with synchrotron magnets

When there is a thin element in a particle’s path during
the time step, the particle is advanced in time, dt1 , to the
element and there the particle momentum receives its
magnetic kick as
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The parameter d is the particle’s fractional deviation
from the design momentum and x is calculated from the
particle’s position and the magnetic poles (an, bn) as
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Using the new momentum the particle is then advanced
in space for the remainder of the timestep (dt2=dt-dt1).

4   SIMULATION RESULTS

For our simulations we have used a simple
synchrotron lattice comprized of eight bending magnets
and eight quadrupole magnets (four focusing and four
defocusing).  Unless otherwise stated the beam energy
was set to 10 MeV, beam current 0.5 amps, and beam
emittances (horizontal and vertical) 10p mm-mrad.  The
magnetic strengths were adjusted so the horizontal
machine tune (nxo) was 1.75, while the vertical machine
tune was adjusted to determine regions of instability.

Using the simulation with the vertical machine tune
set to 0.85 (away from instabilities), we observed the
amplitude dependence of the tune-shift for several
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currents.  Fig. 1 compares the computer results with Eq.
(6) for currents of 0.1, 0.3, and 0.5 amps.
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Fig. 1:  Comparison of Theoretical Tune and Simulation

The region on integer instability was measured by
scanning  the vertical machine tune between 1.005 and
1.150.  At each tune a simulation run was performed for
up to 500 turns and the final saturation emittance was
recorded.  Fig. 2  shows that the maximum emittance
growth is maximum at nyo=1.05 and ranges between 1.03
and 1.13.
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Fig. 2:  Amplitude Growth as a function of machine tune

Fig. 3 shows the beam tune (ny) as a function of
amplitude for five machine tunes(nyo=1.02, 1.05, 1.08,
1.10, and 1.15).  Those beams whose tunes cross the
integer are unstable, with the largest instability occuring
when most of the beam lies slightly below the integer.
As the resonant beam particles increase in amplitude the
beam density decreases resulting in a lower overall
tuneshift.  This effect causes particles that had tunes
slightly below resonance to become resonant.  Typically
the beam will be unstable when particles with amplitudes
1-20 times that of the beam emittance have integral
tunes.  The upper bound is set to be 20 by the scarcity of
particles at such large amplitudes and the lower bound
by the steep slope of the tune distribution at low
amplitudes.  The unstable band of machine tune in the
vicinity of the integer resonance of n is

        n e n eo+ - < < + -
- -

D Dn

h
n

n

h

h hmax max( ) ( ).
20

1 120 (18)

For our parameters, with h=0.32, Dn max .= 0165, and

n=1, the range of instability is 1025 113. .< <n o .

This agrees with the region of instability from our
simulation shown in Fig. (2).
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Fig. 3:  Tune distribution as it crosses resonance

5   CONCLUSIONS

To understand the region of integral resonance, it is
necessary to include the tune spread as a function of
amplitude.  A Gaussian beam will be unstable when
particles with an amplitude greater than the rms
emittance have integral tune.  The resonance has the
effect of increasing the beam emittance (which decreases
the tune shift) until all of the individual particle tunes are
above the resonant tune.  The emittance growth is
maximum when most, but not all, beam particles lie
below the resonant tune.  When all of the particles lie
below the resonant tune, the beam is stable.  Work
supported by DOE and Hitachi.
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