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Abstract

When a short (mm-length) bunch with high (nC-regime)
charge is transported through a magnetic bending system,
self-interaction via coherent synchrotron radiation (CSR)
and space charge may alter the bunch dynamics signifi-
cantly. We consider a Gaussian rigid-line-charge bunch
following a straight-path trajectory into a circle, with the
trajectory centered between two infinite, parallel, perfectly
conducting plates. Transients associated with CSR and
space charge generated from source particles both on the
straight path and the circle are calculated, and their net
effect on the radiated power is contrasted with that of
shielded steady-state CSR.

1 INTRODUCTION

When short (mm-length), high-charge (nC-regime)
bunches are injected into magnetic bending systems,
coherent synchrotron radiation (CSR) and space charge
may cause serious degradation of beam quality. This
possibility is a serious concern for various transport-lattice
designs associated with, for example, free-electron lasers
(FELs), including bunch-compressor chicanes preceding
wigglers and recirculation loops associated with energy
recovery. Almost all previous theoretical work on CSR
has concerned its steady-state properties. Examples
concerning steady-state CSR in free space include the
frequency-domain [1] and time-domain analyses [2].
Examples concerning steady-state CSR with shielding,
i.e., in the presence of conducting walls, also include
frequency-domain [3, 4, 5] and time-domain [6] analyses.
Only recently have transients in finite-length magnetic
bends begun to be considered, the principal example
being a time-domain analysis [7], concerning the transient
interaction of a bunch with itself as it passes from a straight
path into a circle in free space. These investigators showed
that both space-charge forces originating from the straight
path and CSR forces originating from the circle make
important contributions to the transient self-interaction.

In this paper, we generalize the theory of transient self-
interaction in a magnetic bend by incorporating conducting
walls to introduce shielding of CSR. Working in the time
domain, we consider an electron bunch with a rigid-line-
charge Gaussian distribution orbiting in the center plane
between two infinite, parallel conducting plates. The bunch
moves from a straight path to a circular orbit and begins ra-
diating. Transient forces arising from source particles on
the straight path (space charge) and on the circle (space
charge and CSR) are calculated, and their net effect is ob-
tained. Parallel plates are incorporated by including forces

originating from image charges.

2 ANALYSIS

The Hamiltonian for an electron with chargee is:

H = c
√

(P − eA/c)2 + m2c2 + eΦ, (1)

whereP − eA/c = γmv is the kinetic momentum for
the electron, in whichv is its velocity,γ is the Lorentz
factor;Φ andA are the scalar and vector electromagnetic
potential on the electron, respectively, arising from the in-
teraction of an external field and the rest of the charge dis-
tribution. Given a rigid-line-charge bunch entering a cir-
cle from a straight path, the rate of change of the kinetic
energy for an “observer” electronS located on the bunch
at the space-time coordinate(r, t) can be derived from the
above Hamiltonian in terms of the potentialsΦ0 andA0 on
S generated by a single “source” electronS′:

mc2 dγ

dt
= βcFθ, Fθ =

∫ ∞

−∞
ds′Fθ0(r, t, s′)n(s′),

Fθ0(r, t, s′) =
e

βc

[
−dΦ0

dt
+

∂

∂t
(Φ0 − β ·A0)

]
,

(Φ0,A0) = e

[
(1,β)

(1 − β · n)R

]
ret

,

(2)
whereFθ0 is the longitudinal electric force exerted byS′ on
S; n(s′) is the line-density of the bunch, withs′ denoting
the distance of electronS′ from the bunch center in the
bunch rest frame. The subscript “ret” in the single-electron
potentials incorporates the retardation relation for a photon
emitted byS′ at(r′, t′) to reachS at(r, t): c(t− t′) = |R|,
with R ≡ r(t) − r′(t′). In addition, we have in Eq. (2)
n = R/|R| andβret = vret/c. The force exerted on single
particle by the whole bunch calculated by way of Eq. (2)
forms the basis of our analysis. In what follows, we shall
use the indices “(a)” and “(b)” to denote the case that at
retarded timest′ the source particleS′ is located on the
straight path and on the circle, respectively. To take into
account of the interaction onS from image charges due to
the presence of the parallel plates, the source particleS′ is
allowed to have an offsetz′ perpendicular to the plane of
the orbit. This will correspondingly affect the retardation
times associated with image charges.

2.1 Case (a):S′ on straight path att′, S on circle att

Fig. 1 depicts an observer electronS at angleθ on the circle
of radiusρ at timet experiencing a force generated from a
source electronS′ (which, in Fig. 1, is an image charge) at
coordinater′ = (−x′, 0, z′) at timet′ (x′ ≥ 0). With t = 0
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Figure 1: Interaction ofS′ on S, with S′ on the straight
path prior to the bend at the retarded time, andS on the
circular orbit.

being the moment when the bunch center enters the circle,
the trajectories ofS andS′ are respectively described by

S : ρθ = s + βct, S′ : −x′ = s′ + βct′. (3)

In the coordinate system(x̂, ŷ, ẑ), depicted in Fig. 1, the
vector R from S′ to S is (Rx, Ry, Rz) = (ρ sin θ +
x′, ρ cos θ − ρ, z′). According to Eq. (2), the longitudinal
electric force exerted byS′ onS can be obtained from

F
(a)
θ0 = −e∂V (a)/∂∆s, V (a) = V

(a)
0 +(Φ0−β ·A0)(a),

V
(a)
0 = V(a)

0 (θ,∞) − V(a)
0 (θ,∆s),

V(a)
0 (θ,∆s) = e[(1 − cos θ) − RyR′

x sin θ/R2
⊥]/R1,

(Φ0 − β ·A0)(a) = e(1 − β2 cos θ)/R1.
(4)

with ∂V
(a)
0 /∂∆s = dΦ(a)

0 /βc dt. Here R2
1 = R

′2
x +

R2
⊥/γ2, R2

⊥ = R2
y + R2

z, and R′
x ≡ Rx − βR =

ρ(∆φ + sin θ − θ) is the distance fromS′
p to S projected

on thex̂-direction, withS′
p denoting the position ofS′ at

time t were it to continue executing uniform linear motion
at all retarded timest′ ≤ t. We are letting∆s ≡ s − s′

denote the distance betweenS′ andS in the rest frame of
the bunch, and we define∆φ = ∆s/ρ. We will show that
whenR′

x = 0, the straight path introduces transient space-
charge forces on the bunch comparable to transient CSR
forces from the circle.

2.2 Case (b):S′ on circle att′, S on circle att

The motions ofS andS′ are now described by

S : ρθ = s + βct, S′ : ρθ′ = s′ + βct′. (5)

Causality requires∆θ = θ − θ′ to depend on∆φ = (s −
s′)/ρ, the relative spacing of the two particles in the bunch
rest frame, in the manner

ρ∆θ = ρ∆φ + βR, R =
√

[2ρ sin(∆θ/2)]2 + z′2.
(6)

Here only the forward radiation is considered in that∆θ ≥
0. In free space, for whichz′ ≡ 0, the causality condition is
∆θ = 4sh[(1/3)sh−1(3γ3∆φ/2)]/γ. For image charges,
with z′ 6= 0, σs � h/ρ, and∆θ � γ−1, one can approxi-
mate Eq. (6) by∆θ4− (24∆φ)∆θ−12(z′/ρ)2 = 0, which

has the solution

∆θ =
∆θ0

31/4



√√√√√

shη
sh(η/3)

− sh
η

3
+

∆φ

|∆φ|
√

sh
η

3


 , (7)

where ∆θ0 ≡ (12)1/4|z′/ρ|1/2 is the value of ∆θ
when ∆φ = 0, and η ≡ sh−1[9∆φ2/2|z′/ρ|3].
Limiting cases includeη � 1, for which ∆θ '
∆θ0

[
1 + (3/4)1/4∆φ|z′/ρ|−3/2

]
, andη � 1, for which

∆θ ' 2(3∆φ)1/3H(∆φ), with H(x) denoting the Heavi-
side step function.

It can be shown thatdΦ(b)
0 /dt = 0, and consequently

F
(b)
θ0 = −e∂V (b)/∂∆s, V (b) = (Φ0 − β ·A0)(b),

V (b) = e
β(1 − β2 cos∆θ)

ρ(∆θ − ∆φ − β2 sin∆θ)
,

(8)
where causality determines∆θ(∆φ) per Eq. (6).

2.3 Longitudinal Electric Force on S from Whole Bunch

To remove the singularity due to the rigid-line-charge
model whenS andS′ overlap, and to isolate the conse-
quences of the circular motion ofS, we now calculate the
residual longitudinal electric force exerted by the whole
bunch on S:F̂θ ≡ Fθ − Fs, whereFs is the integral of
Fs0 over the charge distribution, withFs0 ≡ −e∂Vs/∂∆s
being the space-charge force obtained when the bunch
moves on a straight path with constant velocityv, i.e.,
Vs = eγ−2(∆s2 + z′2/γ2)−1/2. The corresponding resid-
ual potentials arêV (a,b) = V (a,b) − Vs.

To calculateF̂θ, we let∆s = ∆st(θ, z′) whenS′ is at
the entry to the circleθ′ = x′ = 0, with ∆st(θ, z′) =
ρθ − β

√
[2ρ sin(θ/2)]2 + z′2. In applying Eq. (2),F (a)

θ0 is

used forFθ0 if ∆s > ∆st andF
(b)
θ0 is used if∆s0 < ∆s ≤

∆st, with ∆s0(z′) = −β|z′| designating the transition
point between forward and backward radiation occurring
at∆θ = 0. Upon applying Eqs. (4) and (8) and integrating
Eq. (2) by parts, noting that̂V (a)(θ,∞) = V̂ (b)(∆s0) = 0,
we obtain the residual longitudinal electric force onS aris-
ing from the whole bunch:

F̂θ(θ, s, z′) = F
(a)
0 + F (a) + F (b);

F
(a)
0 = eV

(a)
0 (θ,∆st)n(s − ∆st),

F (a) = e

∫ ∞

∆st(θ,z′)
d∆sV̂ (a)(θ,∆s, z′)

dn(s − ∆s)
d∆s

,

F (b) = e

∫ ∆st(θ,z′)

∆s0(z′)
d∆sV̂ (b)(∆s, z′)

dn(s − ∆s)
d∆s

,

(9)
where one hasV (a)

0 (θ,∆st) = −e|Ry|/ρ(R + ρ sin θ)
from Eq. (4). It turns out thatF (a)

0 is negligible com-
pared toF (a) and F (b). Since the potentials are con-
tinuous at entry to the circle,(Φ0 − β · A0)(a)|∆st =
(Φ0−β ·A0)(b)|∆st , a strong, energy-dependent, transient
accelerating force arising from space charge generated on
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the straight path cancels with a strong, energy-dependent,
transient decelerating force arising from CSR on the circle.

From Eq. (4) one can show that in the high energy limit,
V̂ (a) behaves like a step function which cuts off at∆s =
∆sc = ρ(θ − sin θ): V̂ (a) ' U (a)(θ, z′)H(−R′

x), with
U (a)(θ, z′) = 2e|Ry| sin θ/R2

⊥. This result can be traced
to the impulse-like behavior of the single particle space-
charge forceF (a)

θ0 in Eq. (4) onS from S′ whenR′
x = 0.

For γθ > 1, the cutoff occurs on the straight path,∆sc >
∆st, leading toF (a) ' eU (a)(θ, z′)[n(s − ∆sc) − n(s −
∆st)], which is an energy-independent transient force with
peak value comparable in magnitude withF (b).

It is now straightforward to incorporate two infinite par-
allel plates with spacingh, with the bunch moving on the
plane centered between the plates, by considering the array
of image charges that comove with the bunch in the planes
z′ = ±nh. The total shielded longitudinal forcêF sh

θ on
the electronS from all the image bunches is thus obtained
from the unshielded forcêFθ in Eq. (9),

F̂ sh
θ (θ0, s) =

∞∑
n=−∞

(−)nF̂θ(θ = θ0 + s/ρ, s, nh), (10)

in whichθ0 = βct/ρ is the angular coordinate of the bunch
center. Eq. (10) constitutes the starting point for calculating
bend-induced energy spread, which in turn causes degrada-
tion in transverse emittance.

3 POWER LOSS

To look at the amplitudes and duration of the transients, we
turn to a calculation of the shielded power lossP̂ sh(θ0) of
the bunch induced by its self-interaction. This is obtained
by integrating the rate of kinetic energy loss of a single
electron over the portion of the bunch on the circle:

P̂ sh(θ0) = P̂ (θ0, 0) + 2
∞∑

n=1

(−)nP̂ (θ0, nh),

P̂ (θ0, nh) = −βc

∫ ∞

−θ0

dsF̂θ(θ = θ0 + s/ρ, s, nh)n(s),

(11)
where P̂ (θ0, 0) is the power loss in free space, and
P̂ (θ0, nh) represents the bunch’s power loss due to its in-
teraction with thenth image bunch obtained from̂Fθ given
in Eq. (10). The integration spansθ ≥ 0, or s ≥ −θ0.
When the whole bunch is well into the bend,θ0 � σs/ρ,
and the lower limit−θ0 effectively becomes−∞. Denot-
ing ∆s

(n)
t (θ) = ∆st(θ0, nh), we then have

P̂ (θ0, nh) ' P̂
(a)
0 (θ0, nh) + P̂ (a)(θ0, nh) + P̂ (b)(θ0, nh);

P̂
(a)
0 (θ0, nh) = −βceV

(a)
0 [θ0,∆s

(n)
t (θ0), nh]f [∆s

(n)
t (θ0)],

P̂ (a)(θ0, nh) = −βceU (a)(θ0, nh)[f(∆sc)−f(∆s
(n)
t )]|θ=θ0 ,

P̂ (b)(θ0, nh) = −βce

∫ ∆s
(n)
t

(θ0)

∆s0(nh)

d∆s V̂ (b)(∆s, nh)g(∆s).

(12)
where

f(∆s) ≡
∫ ∞

−∞
n(s)n(s−∆s)ds, g(∆s) ≡ df(∆s)/d∆s,

(13)

In steady-state cases one hasP̂ (∞, nh) = P̂ (b)(∞, nh). In
particular, one can show that the result of free-space power
lossP̂ (∞, 0) agrees with that of Schiff [1].

The power loss obtained from Eq. (11) using numeri-
cal integration for Gaussian bunch distribution,n(s) =
e−s2/2σ2

s /
√

2πσs, is displayed in Fig. 2 for parameters
ρ = 1 m andσs = 1 mm, typical values in the recirculat-
ing accelerator that will drive Jefferson Lab’s infrared FEL
(the IR Demo) [8]. The dotted curve is the transient power
loss of the bunch in free space,P̂ (θ0, 0)/P̂ (∞, 0), which
rises from zero loss and saturates to steady state. This free-
space result agrees with that given in Ref.[7]. The other
curves in Fig. 2 pertain to the presence of parallel conduct-
ing plates. The solid curve corresponds toh = 5 cm, a typi-
cal pipe size in the IR Demo. The spacing is relatively large
to suppress beam loss, and it provides little shielding of the
self-interaction. Stronger shielding can be obtained for nar-
rower gap size with fixed bunch length, as indicated by the
dashed curve corresponding toh = 2 cm. In this case the
steady-state power loss is 25% of the free-space value, in
agreement with results obtained by power-spectrum anal-
ysis as reflected in Fig. 2 of Ref. [9]. Many features of
the transient power loss can be derived analytically and ex-
pressed in closed form, as we plan to show in a future, more
comprehensive paper.
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Figure 2: Transient power loss of a bunch, due to curvature-
induced self-interaction in the presence of parallel plates,
with ρ = 1 m, σs = 1 mm,E = 40MeV, and various plate
spacingsh. Hereθ0 is the angle of bunch center into the
bend.
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