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Abstract

Fast Ion Instability is studied in the nonlinear regime. It
is shown that exponential growth of the linear regime is
replaced in this case by the linear dependence on time. Nu-
meric and analytical results are presented describing the
beam profile and the beam spectrum in both regimes.

1 INTRODUCTION

The Fast Ion Instability discovered recently [1] has been
studied numerically and confirmed experimentally [2]. The
transverse instability is caused by the interaction of a train
of bunches with the residual gas. Ions produced by trans-
versely offset bunches in the head of a train induce oscil-
lations of the tail of the train. The ions may be cleared
out by a gap after one revolution, but the memory remains
in the train. Amplitude of oscillations initially grows as
exp

√
t/tc until the amplitude of a bunch centroid is of the

order of the transverse rmsσ of a bunch. The initial rise
time of the oscillations of a bunch centroid was found to
be a fraction of a millisecond, even taking into account the
spread of ion frequencies [3]. This is too fast to be ob-
served in experiments directly.

The exponential regime is limited by the nonlinearity of
the beam-ion interaction. As a result, exponential growth
at large amplitudes is replaced by a linear dependence of
the amplitude on time [4], and only this nonlinear regime
can be observed experimentally.

The dynamics of the instability in the nonlinear regime
is quite complicated. Additional to the nontrivial interfer-
ence of the perturbations of the beam by the ions excited
by different bunches in the train, the instability in the non-
linear regime essentially depends on the feedback damping
and noise in the system while experiments without feed-
back are hardly possible due to the adverse effects of tra-
ditional multibunch instabilities. All that make necessary
numerical studies of the instability. Simulations include ef-
fects of the feedback and random noise describing the time
dependence of the train profile and the beam spectrum.

2 ANALYSIS OF INSTABILITY

Vertical motion of electrons of then-th bunch on thek-th
turn is described by the equation [4]

∂2y(t, z)
∂t2

+ ω2
by(s, z) = (1)

−κσy

∫ z

0

dz′f [y(t, z)− Y (t, ct − z − kC, z′)] (2)
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whereωb is betatron frequency,

κ =
4re

γsbσxσy

dNi

ds
, (3)

anddNi/ds is the ion production rate per bunch propor-
tional to pressurep.

Similarly, the motion of the ions is described by the
equation

∂2Y (t, s, z)
∂t2

= ω2
i σyf [y(t, ct−kC−s)−Y (t, s, z)]. (4)

Hereωi is ion frequency, and functionf(ξ) in the RHS
of Eq. (2) is eitherf(ξ) = ξ/σy for |ξ| < 1 (the linear
regime), orf(ξ) = ξ/|ξ| for |ξ| > 1, in saturation regime,
and depends only on the sign ofξ.

In the linear regime, these equations were considered in
the original paper [1]. In this case, the solution is

y(t, z) = a(t, z)ei(ωb±ωi)z/c−iωbt + c.c., (5)

Y (t, s, z) = A(t, s, z)e−iωbs/c±iωi(t−s/c) + c.c.. (6)

The solution grows in time only for the upper sign

a(t, z) = a0e
√

t/tc ,
1

ctc
=

κωiz
2

4ωb
, (7)

with the quasi-exponentially growth found in the original
paper [1]. Correspondingly, the spectrum of the BPM sig-
nal

V (t) ∝
∑
n,k

δ(t − kC − nsb/c)y(t, nsb) (8)

consists of the betatron side-bands at frequenciesω =
lωr∓ωb, l = 0, 1.. with the envelope centered at the ion fre-
quency with the lower side-bands having amplitudes larger
than that of the upper side-bands and growing in time.

In the nonlinear regime, the RHS in the Eqs. (2) and
(4) depends on the functionf(ξ). We can expect that
the variation of the argumentξ in time is similar to vari-
ation of the RHS in the linear regime, that is propor-
tional to ei(ωb±ωi)z/c−iωbt in the equation fory(t, z) and
e−iωbs/c±iωi(t−s/c) in the equation forY (t, s, z). In the
strongly nonlinear regime, the spectrum of the RHS is a
spectrum of a step-function which changes sign with the
periods of betatron or ion oscillations. The spectrum of
f(ξ) in Eq. (1) and Eq. (4)) contains in this case harmon-
ics of ωb andωi correspondingly. The amplitudes of the
harmonics roll off slowly as1/n for the n-th harmonic.
In the nonlinear regime, the ions motion is a superposition
of ion frequency harmonics. The amplitudes of harmonics
don’t grow in time but, without the feedback system, their
number does. The RHS of Eq. (2) has always a harmonic

16200-7803-4376-X/98/$10.00  1998 IEEE



oscillating with the betatron frequency. As the result, the
amplitude of the bunch centroid motion linearly increases
in time.

A(nb) ' κs2
bnbntβy

2
t

Tr
. (9)

The linear growth described by Eq. (14) replaces the quasi-
exponential growth of the linear regime, see Eq. (11), when
amplitude is of the order of transverse beam size rms.

3 MODEL FOR SIMULATIONS

To simulate the instability we use a simplified model de-
scribing each bunch in a train ofnb bunches as a single
macroparticle which goes around the ring in steps equal to
sb. All bunches get a kick from each group of ions at the
new location of individual bunches

ȳ′
b = y′

b − κs2
bβyf(yb − Yi) (10)

and each group of ions gets a kick

Ȳ ′
i = Y ′

i + (ωiτb)2f(yb − Yi). (11)

Each bunch generates an ion macroparticle with the offset
equal to the offset of a bunch, and all ions are killed at the
location of the ring just left by the last bunch in the train.
To model variation of the rms beam size around the ring,
the ion frequencies and the kicks to the bunches are peri-
odically modulated with the period equal to1/12-th of the
circumference of the ring (periodicity of the ALS lattice).
The feedback was modeled as a single additional kick for
each bunch per turn

ȳ′
b(s) = y′

b(s) + gyb(s − πβy/2). (12)

The gaing defines amplitude damping timeτd = 2Tr/g.
Random kick uniformly distributed within the range±ans

was added to the RHS of Eq. (17) to simulate noise.
Most of the simulations were carried out for the ALS-

like ring with the revolution periodTr = ntτb, nt = 328,
τb = 2 ns, for the bunch train ofnb = 50 bunches, and He
gas (A = 4). The bunch parameters were:Nb = 4 × 109,
σx = 165µ, and σy = 27µ. The betatron tune was
νy = 8.18, and the ion frequency with these parameters
was50.8 MHz. The pressure was increased to2µTorr and
the damping time of the feedback system toτd = 0.1 ms
to speed up simulations. Initially there were no ions in the
ring, and initial conditions wereyb = y′

b = 0 for all but
the first bunch, for which initial offset ofyb = 1.0 × 10−4

(in units ofσy) andy′
b = 0 were taken. Results for differ-

ent amplitude of the noiseans and modulation∆ωi/ωi are
described below.

4 RESULTS OF THE SIMULATIONS

Fig. 1 shows growth of the amplitude of the last bunch
in the train with number of turns. Dependence is shown
in logarithmic and natural scales. In the left hand side,
results are shown with the feedback system turned down

(1/τd = 0), without noise (amplitude of the noiseans = 0)
and with the amplitude of modulation of ion frequencies
mod = ∆ωi/ωi = 0 or mod = 0.5. Initially, result clearly
corresponds to the quasi-exponential growth of the linear
regime with the parametertc = 0.41µs in accordance with
Eq. (7. Later, the growth of the dimensionless amplitude
is only linear with time and in agreement with Eq. (17),
which gives the ratedA/dn = 0.05.
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Figure 1: Amplitude of the last bunch vs number of turns
in regular (above) and logarithmic ( below) scales. Note
transition from exponential to linear growth. Left: noise
and feedback turned off. (a) mod=0, (b) mod=0.5. Right:
(a) τfdb = 0.1 ms,ans = 0.01, mod=0.5; (b)τfdb = 0.1
ms,ans = 0.002, mod=0.5; (dots)τfdb = 0.1 ms,ans =
0.002, mod=0.

Results with the feedback turned on (τd = 0.1 ms)
are shown in the right hand side of Fig. 1. After initial
growth, the amplitude of the last bunch oscillates around
some steady level. Effect of the ion frequency modulation
in the saturation is small, see two curves without modula-
tion and with the amplitude of modulationmod = 0.5.

The variation of the beam profile can be understood from
the following. Initially, the amplitude of a bunch grows ac-
cording to the linear theory and much faster for the bunches
in the tail of the train then in the head. Later, however,
the feedback takes over and suppresses oscillations of the
bunches in the head of the train to zero amplitudes. As a
result, the growth rate and the amplitudes of the following
bunches decrease and the bunch number with the amplitude
A = 1 increases in time. Oscillations with large amplitudes
retain only in the very tail of the train and, eventually, all
oscillations are damped out.

If we now, additionally to the feedback, turn on the noise,
the beam profile goes to a steady-state, see Fig. 2. Without
the instability, the equilibrium amplitude of a bunch in units
of σ would be

A∞ =
√

y2
b + y′2

b =
√

a2
nsτd/6Tr. (13)

For the parameters used in simulations,Tr = 0.656µs and
τd = 0.1 ms, this amplitude corresponds to the nonlinear
regimeA∞ > 1 for the amplitude of the noiseans > 0.2
If the amplitude is smaller than that, the head of the train
oscillates in the linear regime, and the transition to the non-
linear regime takes place somewhere closer to the train tail.

With the instability, the beam profile oscillates around
almost triangular shape with amplitudes larger in the tail
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Figure 2: Snap-shot of the beam profile. Amplitude vs
bunch number. Vertical scale is blown up 12.5 times.
τfdb = 0.1 ms, mod=0. Case (a)ans = 0.01, case (b)
ans = 0.002. Curveans = 0.002, mod=0 is shown in two
cases and is basically the same as in the case (b).

of the train. This beam profile was observed experimen-
tally [5]. The steady-state amplitudes depend on the feed-
back and are smaller for smallerτd. Comparison of the
beam profile with different level of the noise shows that the
maximum excitation of the beam is not monotonic func-
tion of the amplitude of the noiseans and may be larger
for smaller noise although it goes down again at largerans.
Possible explanation is mentioned above.

The ion frequency modulation reduces the rate of the
instability [3]. Effect is quite noticeable in the linear
regime, but affects less the steady state amplitudes which
are mostly given by the relation between the feedback and
the noise.

The beam spectrum at small number of turns has all fea-
tures of the linear regime: envelope is centered at the ion
frequency,fi/fr = 33.3, see Fig. 3, and the upper side-
bands have lower amplitudes then lower side-bands. On
the longer time scale, the spectrum changes: more harmon-
ics with frequenciesfi ± nfb appear and the ion frequency
decreases due to the increase of the amplitudes of ion. In
the extreme nonlinear case, ions oscillate in a potential well
U = k2

i |Y | and have frequencies depending on the ampli-
tudesA = max(yi),

f

fr
=

ntωiτb

4
√

2A
, (14)

whereωi is ion frequency in the linear regime. In the
nonlinear regime, where the interaction between ions and
bunches depend mostly on the sign of the relative position
of the bunch and ion centroid, there is no reason to ex-
pect that the spectrum is centered around the ion frequency
which is typical for the dipole signal of the linear regime.
It should be noted, that for relatively low noise level, the
head of the train can have small amplitudes corresponding
to the linear regime while the tail of the train at the same
time may be in the nonlinear regime.

The beam spectrum in the nonlinear regime with feed-
back and noise initially is much wider than that in the linear
regime, Fig. 4, but with time only relatively few harmonics
with low frequencies survive.

Calculations with the train of 100 bunches lead to similar
results scaled correspondingly with the number of bunches.
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Figure 3: Snap-shot of the beam spectrum. Amplit. vs
revolution harmonic number. Feedback, noise, and modu-
lation are off.
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Figure 4: Beam spectrum.τfdb = 0.1 ms, ans = 0.01,
mod=0.5.

5 CONCLUSION

Ion-induced fast transverse instability is constrained by
nonlinear effects. Nonlinear effects stop quasi-exponential
growth of the amplitude and only the linear with time
growth remains. The feedback damping suppresses the
bunch oscillations first in the head of the train, effectively
reducing the train length and, therefore, the growth rate of
the instability. With the noise, the beam takes the typical
triangular shape with the profile determined by relation be-
tween noise and the feedback. The spectrum of the beam
become wider and flatter comparing to the spectrum pre-
dicted by the linear theory. Details of the spectrum again
depend on the noise and feedback. This may explain unsta-
ble character of the spectrum in the experiments.
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