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Abstract

Taking the first orthogonal polynomials in the conventional
radial mode expansion in the eigenvalue type perturbation
approach, the usual Keil-Schnell criteria for the microwave
instabilities can be obtained. In this way, a close relation-
ship between the two approaches is established. The exist-
ing results are reviewed, and some comments and modifi-
cations are made.

1 INTRODUCTION

A brief review of beam instability analyses shows that its
development either belongs to a Vlasov-equation-evolved
perturbation approach, or belongs to a Keil-Schnell-
criterion type approach. In the first approach, see [1] and
the references therein, both azimuthal and radial expan-
sions are used to explore the particle distribution evolu-
tions. Current direction is to include the potential well de-
formation, see for example [2], and to include the effect of
Landau damping, see for example [3]. The development
is unlikely to give rise to analytical solutions that can be
easily used. On the other hand, the second approach uses
crude beam profile (with an exception for the longitudi-
nal coasting beams) to estimate the instability threshold for
both bunched and coasting beams. General results can be
found in [4] and the references therein. These results have
been proved very useful and often provide guidance to the
development and improvement of accelerators. The crude
beam profile, however, has certainly imposed limitations in
the application.

In this report, we show that the use of the first orthogonal
polynomials in the perturbation approach can give rise to
identical results obtained by the Keil-Schnell type criteria.
This is owing to the fact that, in general, the first orthogonal
polynomial represents the most prominent radial mode. In
this way, a close relationship between the two approaches
is established. Therefore, comments will be made regard-
ing to the limitation and possible error in the applications
of the simplified criteria. Some modifications will then be
developed, if necessary.

2 TRANSVERSE INSTABILITY

Using the first orthogonal polynomial for the azimuthal
modem = 0, settingβ ≈ 1, the bunched beam dynamic
equation becomes,

ω − ωβ =
jeI0

2Rm0γωβ

∞∑
n=−∞

ZT (n)Λ2
0,1(n

′) (1)
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whereωβ is the betatron frequency,R is the machine ra-
dius. The average beam current isI0 = Neω0/2π, where
N is the number of particles, andω0 is the revolution
frequency. AlsoZT (n) is the transverse impedance, and
Λ0,1(n) is the spectrum of the first orthogonal polyno-
mial for m = 0, wheren represents the effective spec-
trum line, r represents the radial position. The nota-
tion n′ denotes the chromatic effect. The equivalence∑∞

n=−∞ ZT (n)Λ2
0,1(n

′) =
∑∞

n=−∞ ZT (n′′)Λ2
0,1(n) is

used in this article, wheren′′ denotes the frequency shift
equalsn′ but in the opposite direction.

Consider the normalized Gaussian distribution in phase
space,

ψ0(r) =
2
πr2`

e−2r2/r2
` (2)

wherer` is the half bunch length in radius. The transverse
weight function is defined asWT (r) = ψ0(r).

In the following, the instability threshold will be ob-
tained by the rule of thumb, which is,

|∆Ω| < ∆ω (3)

where∆Ω is the coherent frequency shift, and∆ω is the
rms or the half width of half maximum frequency spread.

2.1 Bunched Beam

An estimate of the bunched beam instability threshold can
be obtained usingΛ2

0,1(n
′) ≈ 1/2π in (1),∣∣∣∣∣

∞∑
n=−∞

ZT (n)

∣∣∣∣∣ <
4πRm0γωβ

eI0
∆ω (4)

The criterion given in the equation (5.62) of [4] can be writ-
ten as, ∣∣∣∣∣

∞∑
n=−∞

ZT (n)

∣∣∣∣∣ <
2ωβγT

2
0

Nr0c
∆ω (5)

Usingr0 = e2/m0c
2, T0 = 2π/ω0, ω0 = βc/R, the equa-

tion (5) becomes identical to (4).
For a long bunch with a narrow spectrum, the error of us-

ing (4) can be large, mainly owing to the use ofΛ2
0,1(n

′) ≈
1/2π, the peak of the power spectrum. Also the chromatic
effect can introduce uncertainties.

For an improved estimate, therefore, we need to use,

Λ0,1(n) =
1√
2π
e−n2r2

` /8 (6)

Substituting (6) into (1), and considering the chromatic ef-
fect, we get,∣∣∣∣∣

∞∑
n=−∞

ZT (n′′)e−n2r2
` /4

∣∣∣∣∣ <
4πRm0γωβ

eI0
∆ω (7)
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• A criterion is given in [5], which can be written as,

∣∣Z̄T (n′′)
∣∣ < 2ωβγE0zL

ec2I0
∆ω (8)

wherezL is the full bunch length, and̄ZT (n′′) is the
averaged impedance over the width of the bunch spec-
trum. The summation on the right side of (1) can be
approximately taken as,

∞∑
n=−∞

ZT (n)Λ2
0,1(n

′) ≈ Z̄T (n′′)
2R
zL

(9)

Substituting (9), usingm0 = E0/c
2, the equation (1)

becomes

∣∣Z̄T (n′′)
∣∣ < ωβγE0zL

ec2I0
∆ω (10)

Which differs from (7) by a factor of 0.5.

• A better formalism is presented in the equation (18) in
[6]. With m = 0, it can be written as,

∣∣∣∣
∑∞

n=−∞ ZT (n)h0(n′)∑∞
n=−∞ h0(n′)

∣∣∣∣ < 2ωβγm0zL

eI0
∆ω (11)

The left side is called theeffective impedance, where
h0(n′) is the power spectrum of the bunch. If only the
first orthogonal polynomial is used, we haveh0(n′) =
Λ2

0,1(n′). The redundancy in the equation (11) involv-
ing the effective impedance is shown as the follows.
Usingr` = zL/2R, we can write,

∞∑
n=−∞

h0(n) = 2
∫ ∞

0

1
2π
e−n2r2

` /4dn ≈ 2R√
πzL

(12)
Applying this equation into (11), the bunch lengthzL

is cancelled. Since the information of the bunch length
has been represented by the bunch spectrumh0(n′) in
the numerator of the effective impedance, this triple
representation of the bunch length can be seen as re-
dundancy. In comparison, the use of the total effective
impedance shown in the left side of (7) seems to be
more straightforward. Substituting (12) into (11), we
get,∣∣∣∣∣

∞∑
n=−∞

ZT (n′′)e−n2r2
` /4

∣∣∣∣∣ <
8
√
πRm0γωβ

eI0
∆ω

(13)
This differs from (7) by a factor of1.13.

2.2 Coasting Beam

For a coasting beam, the power spectrum of the perturba-
tion is a delta function at a frequencyn1 with an amplitude
1/2π. The equation (1), therefore, is modified as,

ω − ωβ =
jeI0

2Rm0γωβ

∞∑
n=−∞

ZT (n)
δ(n− n1)

2π
(14)

then the instability threshold can be estimated as,

|ZT (n1)| < 4πRm0γωβ

eI0
∆ω (15)

The criterion given in the equation (5.91) of [4] is,

|ZT (n)| < 2ωβγT
2
0

Nr0c
∆ω (16)

which is identical to the equation (15).

• The equation (4) in [5] can be written,

|ZT (n)| < 8FE0γωβ

eI0Rω2
0

∆ω (17)

which can be written as,

|ZT (n)| < 8FRm0γωβ

eI0
∆ω (18)

TakingF = 1, this equation differs from (15), which
is less tight, by a factor of0.64.

3 LONGITUDINAL INSTABILITY

Using the first orthogonal polynomial, for them = 1 mode,
the longitudinal beam dynamic equation in [1] becomes,

ω − ωS =
j2πωSI0
V cosφS

∞∑
n=−∞

ZL(n)
n

Λ2
1,1(n) (19)

whereωS is the synchrotron frequency, andφS is the syn-
chronous phase,V is the RF gap voltage per ring, and
ZL(n)/n is the longitudinal impedance. For a Gaussian
distribution with the half bunch lengthr`, the longitudinal
weight function is,

WL(r) = −∂ψ0(r)
∂r

1
r

=
8
πr4`

e−2r2/r2
` (20)

3.1 Bunched Beam

Using the equations (19) and the approximation,

Λ1,1(n) ≈ n

2
√
π

(21)

the bunched beam instability threshold is written as,
∣∣∣∣∣

∞∑
n=−∞

nZL(n)

∣∣∣∣∣ <
2V |cosφS |
ωSI0

∆ω (22)

where∆ω is the synchrotron frequency spread. The corre-
sponding equation (5.69) in [4] is,

∣∣∣∣∣
∞∑

n=−∞
nZL(n)

∣∣∣∣∣ <
2ωSγ(2πR)2

Nr0|η|c2ω0
∆ω (23)

Using ω2
S = −ω2

0eηV cosφS/2πE, the equation (23) is
shown to be the same as (22).
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This criterion is indeed very crude, owing to that in
arriving (21), the approximation of the Bessel function
J1(nr) ≈ nr/2 is used, which is only valid in a small range
nr < 1.

An improvement to this criterion, therefore, can be made
by using,

Λ1,1(n) =
n

2
√
π
e−n2r2

` /8 (24)

Substituting (24) into (19), we get,∣∣∣∣∣
∞∑

n=−∞
nZL(n)e−n2r2

` /4

∣∣∣∣∣ <
2V |cosφS |

ωSI0
∆ω (25)

• The result in the equation (5) in [7] can be written, for
m = 1 and the harmonic numberh = 1, as,∣∣∣∣

∑∞
n=−∞ (ZL(n)/n)h1(n)∑∞

n=−∞ h1(n)

∣∣∣∣ < 6B3V |cosφS |
ωSI0

∆ω

(26)
whereh1(n) ≈ Λ2

1,1(n) is the power spectrum of the
bunch, andB = r`/π is the bunching factor. Note
that we have,

∞∑
n=−∞

h1(n) = 2
∫ ∞

0

n2

4π
e−n2r2

` /4dn ≈ 1
π7/2B3

(27)
Substituting (27) into (26), using (24), we get,∣∣∣∣∣

∞∑
n=−∞

nZL(n)e−n2r2
` /4

∣∣∣∣∣ <
1.37V |cosφS |

ωSI0
∆ω

(28)
which differs from (25) by a factor of 0.69. Again
we consider that the use of the equation (25) is
more straightforward than (26) with the effective
impedance.

3.2 Coasting Beam

The Landau damping in the longitudinal coasting beam is
the most explored one. Together with the dispersion rela-
tion, the stability diagram can be plotted on the real and
imaginary impedance plane. Compared with the others,
this is the only case that no external focusing presented,
therefore, one may expect that this case should be com-
pletely different from the others.

The successful application of the coasting beam insta-
bility criterion to the bunched beams, i.e. the Boussard
criterion, has opened the door to think that at least for the
long bunches and/or strong instability, the effect of the syn-
chrotron focusing is not irreplaceable. It is found that using
an equivalence

ωS ≈ ∆ω (29)

and the local current, the bunched beam criteria is closely
related with the coasting beam criteria. To establish the
relation, using,

1
|η|

∆ω
ω0

=
(

∆p
p

)
rms

=
ωSr`

2 |η|ω0
(30)

we find that the equation (29) is equivalent tor` = 2. For
this case, the beam power spectrum is still a delta function,
but the amplitude is no longer constant. Since the ampli-
tude of a delta function equals the area of the function, i.e.∑∞

n=−∞ Λ2
1,1(n), removing the impedanceZL(n)/n out

of the summation on the right side of (19), we get,
∣∣∣∣ZL(n)

n

∣∣∣∣ < Er4`
2
√

2e|η|ω2
0I0

(∆ω)2 (31)

Substitutingr` = 2, the equation (31) becomes,
∣∣∣∣ZL(n)

n

∣∣∣∣ < 5.66E
e|η|ω2

0I0
(∆ω)2 (32)

The Keil-Schnell criterion shown in the equation (5.131)
in [4] can read,

∣∣∣∣ZL(n)
n

∣∣∣∣ < 0.68γT 3
0

2πNr0|η| (∆ω)2 (33)

where the tri-elliptical spectrum is used. This equation can
be written the same as (32), except that the factor5.66 be-
comes4.27.

• The equation (1) in [5] can be written,

∣∣∣∣ZL(n)
n

∣∣∣∣ < FγE0|η|
eI0

(
∆p
p

)2

(34)

where the form factorF is a unity. Since∆p/p is the
full momentum spread at half height, using∆p/p =
2(∆p/p)rms, the equation (34) is the same as (32),
except that the factor5.66 becomes4.
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