
EPICS TOOLS ENHANCEMENTS AND TRANSPORTABILITY

M. Bickley, J. Chen, C. Larrieuy , Thomas Jefferson National Accelerator Facility, Newport News, VA

Abstract

The Jefferson Laboratory electron accelerator is controlled
by theExperimental Physics and Industrial Control System
(EPICS), which was initially developed by the Los Alamos
and Argonne National Laboratories, and which has since
become an extensive collaboration among scientific insti-
tutions worldwide. In keeping with the spirit of coopera-
tion and exchange fostered by the EPICS community, the
Controls Software group at Jefferson Laboratory aims to
produce portable software tools useful not only locally, but
also at any EPICS site, and even at non-EPICS sites where
feasible. To achieve this goal, the group practices several
software engineering principles which have demonstrated
success in producing sharable software. This paper first
discusses those principles along with the practicalities in-
volved in pursuing them, and then illustrates how they pre-
vail within three different frameworks: the architecture and
operating system (OS) portability provided by the EPICS
environment, which assists in porting to other EPICS sites;
the control system portability inherent in the Common De-
vice (CDEV) abstraction layer, which facilitates porting
to any supported control system; and the general system
portability which follows from careful code design.

1 GENERAL CONSIDERATIONS

Because a control system is, by intent, uniquely customized
to perform site-specific tasks, designing control system
software for effective use at various unrelated sites might
seem, at first, to require an amount of work disproportion-
ate to the rewards such an endeavor might garner: not only
must the programmer attempting do so solve the immedi-
ate problem which necessitates his application, but he must
also devise some technique for dealing with the differences
which arise among sites. Furthermore, he must decide how
portable his application really can and should be before be-
ginning to work on it.

Fortunately, these latter quandaries are substantially mit-
igated by the nature of the undertaking in question. It may
be of a sort which is “algorithmically” portable from one
site of a particular type, to another of the same type. Two
particle accelerators, for example, might require software
to measure and tune the phase of an RF cavity. While these
sites may not use the same control system, the general solu-
tion to their common problem may be sufficiently parame-
terizable such that the same program could be used at both,
if it were capable of controlling each system in the same
generic way.

�Work supported by the U.S. Department of Energy, contract DE-
AC05-84ER40150

yEmail: larrieu@jlab.org

Another type of inherently portable application is the
sort which provides basic facilities closely tied to the sys-
tem being controlled. Examples include data acquisition,
logging, and retrieval systems, human interfaces for mon-
itoring and managing the underlying physical system, and
utilities for measuring and analyzing the system in a user-
specified manner. Such tools are fairly useful in a general
sense across control systems and physical machines, so that
for every site to design its own set seems tantamount to
“reinventing the wheel”. Ideally, the site-specific informa-
tion should be configured via some localization method.

Of course, there are good and bad reasons for one site
to avoid reusing software from another. In order to cre-
ate a general purpose tool which another site will want to
use, the designer must in some way address both. Among
the former category are considerations arising from con-
cern over efficiency and compatibility. Does the applica-
tion make assumptions about the underlying system such
that it works well in one situation but not in another? If
it generates output data, will it do so in a format which
other tools can read? Notorious among the bad reasons
is reluctance arising from the well-known “not developed
here” syndrome, a psychological phenomenon pervasive in
the engineering world. It derives, perhaps, from the fear
of becoming dependent upon the work of someone whose
interests may not necessarily coincide with one’s own.

This leads to a consideration of those factors which
might induce a developer to produce code specifically de-
signed only for local use. The benefit of such an approach
is that it may allow for a tight integration among the tools
in a local suite: if an application can make assumptions
about the existence of other facilities, it can incorporate
their features, providing users with multiple points of en-
try to the various system tools. Additionally, designing for
a known system allows for faster development –because
the programmer knows exactly the environment in which
his application will run, he can avoid having to handle cer-
tain special exceptions which might arise from one site to
another. Furthermore, a small user base will likely limit
requirements and feature creep.

Note, however, that these assumptions about the environ-
ment imply that the benefits pertain only if the situation for
which the application is written persists over time. What
happens if something about it changes? What if one of
the subsystems upon which the code depends is removed,
or, more drastically, if the control system changes (not so
preposterous: the CEBAF accelerator was switched from
TACL[1] to EPICS during the commissioning of the ma-
chine in the mid ’90s). The programmer can ameliorate the
problems arising from such occurrences by designing his
application to be portable from the outset.Fundamentally,

*

0-7803-5573-3/99/$10.00@1999 IEEE. 741

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

the principles pertinent to designing portable code are also
those which lead to reliable, maintainable, and extensible
code.

While the primary mission of the controls software
group at Jefferson Lab is to support the operation of the ac-
celerator, we find that by designing our code to be portable,
we are investing a small amount of additional time and ef-
fort in the initial development phase in order to facilitate
future development work.

2 EXTENDING AN EPICS APPLICATION

The EPICS [2] system provides a fairly simple framework
for developing control system client applications, by pro-
viding site-specific configuration files and a C/C++ appli-
cation programming interface (API). All high-level interac-
tion with the control system can be conducted through the
channel access library, which is a set of routines for estab-
lishing connections to named parameters in the control sys-
tem. Within this framework, the task of designing software
for porting to other EPICS installations reduces to produc-
ing code based on UNIX portability standards to address
the issue of OS and machine independence, and modular-
izing those portions which make use of site-specific sub-
systems.

One useful application which was originally written at
APS, then subsequently enhanced and modularized at Jef-
ferson Lab, is a real-time data plotting utility called Strip-
Tool. While the original version was designed specifically
for EPICS, the revision produced by Jefferson Lab was de-
signed with the intent that it be control system independent.
Because its functionality was initially quite simple in con-
cept (the user just supplies the name of a control system
parameter whose value he wishes to see plotted), the pro-
cess of compartmentalizing the platform-specific code was
relatively straightforward: all functionality was broken out
into modules, so that the data acquisition, data buffering,
graphical presentation, user interface, and timing compo-
nents all belonged in separate modules with very well de-
fined interfaces.

The process of transporting StripTool from one EPICS
system to another is trivial, because it capitalizes on the
EPICS-supplied configuration files and compilation in-
structions (“makefiles”). The interested party can, for all
intents and purposes, simply download the source code, run
the EPICS build command to create the binary executable,
and then run it. In order to port StripTool to another con-
trol system, however, the local programmer must supply a
“plug-in” for the data acquisition module, which amounts
to writing a minimal set of routines as specified in theStrip-
DAQ file, and linking them into the compiled program. It
took just a couple hours to implement a CDEV data ac-
quisition module, following this procedure. Now, both the
Channel Access and CDEV modules are included with the
source code, and the proper one is linked depending upon
the build environment.

After these initial enhancements, the natural progression

was to provide some support for viewing old data in addi-
tion to that which had been acquired through the real-time
acquisition unit. Because StripTool only buffers the most
recent data for some selectable time span, however, it re-
quires some other facility from which to acquire the older
data. In other words, providing such functionality intro-
duces a dependency upon an auxiliary sub-system. Be-
cause a data logging and retrieval system is pretty much
essential to any control system environment, several of the
sites using StripTool have developed their own custom ap-
plications to serve this purpose. In order to accommodate
all sites interested in incorporating this functionality into
StripTool, another module,StripHISTORY, was defined. It
describes a minimal set of routines specifying only those
features of the system which StripTool requires. Regard-
less of how sophisticated a particular site’s archiving ser-
vice may be, StripTool just requires 3 functions in addi-
tion to an initialization routine: (1) “get data for parameter
X over time range(t0; t1)”, (2) “exchange this data for a
new time range”, (3) “free this data”. By implementing
just these three routines as the “glue” between the applica-
tion and a specific subsystem, a local programmer is able
to hook his unique archiving service into StripTool with
only a minimal amount of work, while still ensuring that
the resulting code need not be merged back into a central
repository. This last point is important, because it helps to
preclude situations which lead to initially diverging, then
redundant parallel work, brought about by small changes
in code from one site to another which never synchronize.

This technique is, in some sense, a “reverse black box”
(it’s also the model used for operating system device
drivers), in that the application defines an empty plug-in
mechanism, which can be filled by site programmers to
translate an application’s requests for auxiliary services
into a protocol which the underlying subsystem can under-
stand. However, if a site does not wish to use the specific
feature, it need take no special action. This approach al-
lows for integrating system tools by defining the interfaces
between them in simple terms. A concomitant benefit of
this approach is that, as the subsystems become more in-
tegrated, the interfaces will necessarily become more de-
tailed, leading to better documented code.

3 THE CDEV ABSTRACTION LAYER

The Common Device API (CDEV) is an abstraction layer
developed at Jefferson Laboratory[3], which allows the var-
ious subsystems of a control system to be addressed in a
generic and consistent manner. It has been used to inte-
grate multiple control systems, as well as to incorporate
client-side applications into the control system.

An application designed specifically for CDEV must
adhere to conventional portability standards to remain
portable across platforms, and becomes entirely dependent
upon being run in a special environment, which the lo-
cal programmer must build, install, and configure. While
this process may not seem easier than simply writing some

742

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

small amount of “plug-in” code, it does present the bene-
fit that the requisite work represents a one-time investment,
whereas having to write small bits of code for lots of ap-
plications can become wearisome, particularly when those
bits are intended to perform the same task!

An EPICS Channel Access component has been written
which allows CDEV applications to talk to Channel Ac-
cess without directly relying upon the EPICS code. This
has the effect of moving the control system dependency
away from the user application and into the intermediary
layer. Several EPICS utilities, like the alarm handler and
medm have been modified to use CDEV in lieu of Chan-
nel Access, allowing them to be used in conjunction with
non-EPICS control systems.

The controls software group at Jefferson Lab have also
developed several new utilties. Zplot is a motif applica-
tion that plots device attribute values against their coordi-
nates along an accelerator. Xtract, the “X-windows Tool
for Recording And Correlating Things” allows the user to
change the system in a highly configurable manner, mea-
suring various parameters along the way, resulting in data
describing a discrete function of the stepped parameters. In
this regard it is a general purpose experimentation program.

4 PORTABILITY THROUGH
OBJECT-ORIENTED DESIGN

One of the greatest benefits of object oriented programming
language like C++ is that it provides support for designing
abstraction into an application. In designing a new appli-
cation, the desired end product can be conceptualized as a
virtual machine, comprised of distinct parts. The program-
mer’s task is to forge actual software constructs (Classes,
in C++ OO terminology) from these general specifications.
The interesting thing about this process, is that it leads to
a natural separation between the conceptual nature of the
components and their corresponding implementation.

At Jefferson Lab, we use the EPICS archiver to log tens
of thousands of control system parameters continuously,
producing massive amounts of data which are subsequently
compressed and cataloged in a locally developed database.
Of course, once the data is nicely organized, one requires
some mechanism by which to retrieve it: a program to fa-
cilitate browsing through the archived data, and converting
it into a useful format. Because such a tool would be gen-
erally useful to other sites, and because we anticipated that
our archiving system will change as we phase in new sub-
systems, we decided to develop a portable system based
upon OO design principles.

The resulting tool (XARR: the Xwindows ARchive Re-
triever), as used at Jefferson Lab, is comprised of 3 lay-
ers. At the top is the graphical interface, which is imple-
mented in C++, using the Motif widget set. Beneath this
is the database layer which catalogues the available data.
At the lowest level is an I/O library for reading and writ-
ing data from and to the storage medium. Because the two
bottom layers are primarily specific to Jefferson Lab’s stor-

age system, while the top layer is not, the interface between
them is implemented as a set of three abstract object types,
corresponding conceptually to the components describing
a general purpose data retrieval machine and the items it
would require to perform its task: a DataSource, a Data-
Handle, and a DataBuffer. The DataSource enumerates the
objects stored in the archive, provides lookup and search
capability, and retrieves data. The DataHandle conceptu-
ally represents a way to identify some unique parameter
in the archive. The DataBuffer encapsulates the data for a
particular DataHandle over some time range, and provides
methods for iterating over the contained data points.

The programmer interested in building XARR for use
with some other archive must create three C++ classes de-
rived from those named above, overriding the default be-
havior with site-specific details. When the application is
compiled, the appropriate class definitions are included in
the main startup routine.

5 CONCLUSIONS

While the ultimate goal in portability is to eliminate as
much site-specific “tweaking” as possible, this often proves
unattainable without also decreasing the efficiency or use-
fulness of an application. The most useful sort of porta-
bility within an open-source environment is the kind that
allows local programmers at various sites to acquire code
which they can easily modify to suit their own needs. For-
tunately, this naturally follows from good design and cod-
ing principles. As illustrated above, by designing code
modularly, those portions which require modification from
site to site are isolated and readily found by the local pro-
grammers. If the code is also well documented, then the
local programmer may more easily and confidently supply
the necessary site-specific modifications, helping to relieve
the “not developed here” syndrome. Because the local code
is isolated in distinct modules, the process of upgrading to
new versions of the software reduces to plugging in those
site-specific modules to the new source code. While all
these good things benefit the recipients of the “free” work,
they also benefit the original developer and his site by pro-
viding software which is easily maintainable, extensible,
and likely to remain useful through system changes.

6 REFERENCES

[1] K. S. White, H. Shoaee, W. A. Watson, M. Wise, “The Migra-
tion of the CEBAF Accelerator Control System from TACL
to EPICS”,CEBAF Controls System Review, 1994, Newport
News, VA.

[2] Leo R. Dalesio, et. al., “The Experimental Physics and Indus-
trial Control System Architecture: Past, Present, and Future”,
International Conference on Accelerator and Large Experi-
mental Physics Control Systems, Oct. 1993.

[3] J. Chen, G. Heyes, W. Akers, D. Wu and W. Watson III,
“CDEV: An Object-Oriented Class Library for Developing
Device Control Applications”,Proceedings of ICALEPCS
1995, p 97.

743

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

