Proceedings of the 1999 Particle Accelerator Conference, New Y ork, 1999

EPICS TOOLS ENHANCEMENTS AND TRANSPORTABILITY

M. Bickley, J. Chen, C. Larriely Thomas Jefferson National Accelerator Facility, Newport News, VA

Abstract Another type of inherently portable application is the

Sé)r'[which provides basic facilities closely tied to the sys-

The Jefferson Laboratory electron accelerator is controll:iem beina controlled. Examples include data acauisition
by theExperimental Physics and Industrial Control Syste Peng oo P . d '
logging, and retrieval systems, human interfaces for mon-

(EPICS), which was initially developed by the Los Alamos(t_}oring and managing the underlying physical system, and

and Argonne National Laboratories, and which has Sinclutilities for measuring and analyzing the system in a user
become an extensive collaboration among scientific insti- 9 yzing y

tutions worldwide. In keeping with the spirit of coopera-SpeC'f'ed manner. Such tools are fairly useful in a general

tion and exchange fostered by the EPICS community, ﬂ}seense across conctjrollsyst'ems and physical machines, so that
Controls Software group at Jefferson Laboratory aims t.é) r every site to e5|g“n Its own set Seems tgp tgmount o
produce portable software tools useful not only locally, butremventmg the Wh.e el’. Ide;ally, the S|te-§pe_0|f|c informa-
also at any EPICS site, and even at non-EPICS sites whdi@n should be configured via some localization method. .
feasible. To achieve this goal, the group practices severalOf course, there are good and bad reasons for one site
software engineering principles which have demonstratdg avoid reusing software from another. In order to cre-

success in producing sharable software. This paper firdte @ general purpose tool which another site will want to

discusses those principles along with the practicalities iiSe: the designer must in some way address both. Among
volved in pursuing them, and then illustrates how they prél1® former category are considerations arising from con-
vail within three different frameworks: the architecture an€ Over efficiency and compatibility. Does the applica-
operating system (OS) portability provided by the EPIC$ON Mmake assumptions about the underlying system such
environment, which assists in porting to other EPICS site&at it works well in one situation but not in another? If
the control system portability inherent in the Common Del! 9enerates output data, will it do so in a format which
vice (CDEV) abstraction layer, which facilitates portingOther tools can read? Notorious among the bad reasons

to any supported control system; and the general Systejﬁqreluctance arising from the well-known “not developed

portability which follows from careful code design. here” syndrome, a psychological phenomenon pervasive in
the engineering world. It derives, perhaps, from the fear

of becoming dependent upon the work of someone whose
1 GENERAL CONSIDERATIONS interests may not necessarily coincide with one’s own.
Because a control systemis, by intent, uniquely customized This leads to a consideration of those factors which
to perform site-specific tasks, designing control systemmight induce a developer to produce code specifically de-
software for effective use at various unrelated sites miglsigned only for local use. The benefit of such an approach
seem, at first, to require an amount of work disproportions that it may allow for a tight integration among the tools
ate to the rewards such an endeavor might garner: not onty a local suite: if an application can make assumptions
must the programmer attempting do so solve the immedibout the existence of other facilities, it can incorporate
ate problem which necessitates his application, but he museir features, providing users with multiple points of en-
also devise some technique for dealing with the differencesy to the various system tools. Additionally, designing for
which arise among sites. Furthermore, he must decide h@avknown system allows for faster development —because
portable his application really can and should be before bdte programmer knows exactly the environment in which
ginning to work on it. his application will run, he can avoid having to handle cer-
Fortunately, these latter quandaries are substantially migin special exceptions which might arise from one site to
igated by the nature of the undertaking in question. It magnother. Furthermore, a small user base will likely limit
be of a sort which is “algorithmically” portable from one requirements and feature creep.
site of a particular type, to another of the same type. Two Note, however, that these assumptions about the environ-
particle accelerators, for example, might require softwargent imply that the benefits pertain only if the situation for
to measure and tune the phase of an RF cavity. While the@gich the application is written persists over time. What
sites may not use the same control system, the general soigppens if something about it changes? What if one of
tion to their common problem may be sufficiently paramethe subsystems upon which the code depends is removed,
terizable such that the same program could be used at bogh, more drastically, if the control system changes (not so
if it were capable of controlling each system in the samgreposterous: the CEBAF accelerator was switched from

generic way. TACL[1] to EPICS during the commissioning of the ma-
*Work supported by the U.S. Department of Energy, contract DEthe in the mld 908)' The programmer can amel_lorate th_e

ACO5-84ER40150 problems arising from such occurrences by designing his
T Email: larrieu@jlab.org application to be portable from the outsEundamentally,

0-7803-5573-3/99/$10.00@1999 | EEE. 741

Proceedings of the 1999 Particle Accelerator Conference, New Y ork, 1999

the principles pertinent to designing portable code are alswas to provide some support for viewing old data in addi-
those which lead to reliable, maintainable, and extensiblgon to that which had been acquired through the real-time
code. acquisition unit. Because StripTool only buffers the most
While the primary mission of the controls softwarerecent data for some selectable time span, however, it re-

group at Jefferson Lab is to support the operation of the aquires some other facility from which to acquire the older

celerator, we find that by designing our code to be portabldata. In other words, providing such functionality intro-
we are investing a small amount of additional time and efduces a dependency upon an auxiliary sub-system. Be-
fort in the initial development phase in order to facilitatecause a data logging and retrieval system is pretty much
future development work. essential to any control system environment, several of the
sites using StripTool have developed their own custom ap-

2 EXTENDING AN EPICS APPLICATION plications to serve this purpose. In order to accommodate
all sites interested in incorporating this functionality into

The EPICS [2] system provides a fairly simple frameworiStripTool, another modulé&tripHISTORYwas defined. It
for developing control system client applications, by prodescribes a minimal set of routines specifying only those
viding site-specific configuration files and a C/C++ applifeatures of the system which StripTool requires. Regard-
cation programming interface (API). All high-level interac-less of how sophisticated a particular site's archiving ser-
tion with the control system can be conducted through théce may be, StripTool just requires 3 functions in addi-
channel access library, which is a set of routines for estalion to an initialization routine: (1) “get data for parameter
lishing connections to named parameters in the control sy§- Over time rangeto, t1)”, (2) “exchange this data for a
tem. Within this framework, the task of designing softwardew time range”, (3) “free this data”. By implementing
for porting to other EPICS installations reduces to produdust these three routines as the “glue” between the applica-
ing code based on UNIX portability standards to addredi®n and a specific subsystem, a local programmer is able
the issue of OS and machine independence, and modultg-hook his unique archiving service into StripTool with
izing those portions which make use of site-specific sugnly a minimal amount of work, while still ensuring that
systems. the resulting code need not be merged back into a central
One useful application which was originally written at'epository. This last point is important, because it helps to
APS, then subsequently enhanced and modularized at Jafeclude situations which lead to initially diverging, then
ferson Lab, is a real-time data plotting utility called Strip-redundant parallel work, brought about by small changes
Tool. While the original version was designed specificallyn code from one site to another which never synchronize.
for EPICS, the revision produced by Jefferson Lab was de- This technique is, in some sense, a “reverse black box”
signed with the intent that it be control system independerfit’s also the model used for operating system device
Because its functionality was initially quite simple in con-drivers), in that the application defines an empty plug-in
cept (the user just supplies the name of a control systefechanism, which can be filled by site programmers to
parameter whose value he wishes to see plotted), the piganslate an application's requests for auxiliary services
cess of compartmentalizing the platform-specific code wagto a protocol which the underlying subsystem can under-
relatively straightforward: all functionality was broken outstand. However, if a site does not wish to use the specific
into modules, so that the data acquisition, data bufferindgature, it need take no special action. This approach al-
graphical presentation, user interface, and timing comptws for integrating system tools by defining the interfaces
nents all belonged in separate modules with very well déetween them in simple terms. A concomitant benefit of
fined interfaces. this approach is that, as the subsystems become more in-
The process of transporting StripTool from one EPIC4egrated, the interfaces will necessarily become more de-
system to another is trivial, because it capitalizes on tHailed, leading to better documented code.
EPICS-supplied configuration files and compilation in-
structions (“makefiles”). The interested party can, forall 3 THE CDEV ABSTRACTION LAYER
intents and purposes, simply download the source code, run
the EPICS build command to create the binary executabl€éhe Common Device API (CDEV) is an abstraction layer
and then run it. In order to port StripTool to another condeveloped at Jefferson Laboratory[3], which allows the var-
trol system, however, the local programmer must supplyiaus subsystems of a control system to be addressed in a
“plug-in” for the data acquisition module, which amountsgeneric and consistent manner. It has been used to inte-
to writing a minimal set of routines as specified in 8tep- grate multiple control systems, as well as to incorporate
DAQ file, and linking them into the compiled program. Itclient-side applications into the control system.
took just a couple hours to implement a CDEV data ac- An application designed specifically for CDEV must
quisition module, following this procedure. Now, both theadhere to conventional portability standards to remain
Channel Access and CDEV modules are included with theortable across platforms, and becomes entirely dependent
source code, and the proper one is linked depending upapon being run in a special environment, which the lo-
the build environment. cal programmer must build, install, and configure. While
After these initial enhancements, the natural progressidhis process may not seem easier than simply writing some

742

Proceedings of the 1999 Particle Accelerator Conference, New Y ork, 1999

small amount of “plug-in” code, it does present the beneage system, while the top layer is not, the interface between
fit that the requisite work represents a one-time investmerthem is implemented as a set of three abstract object types,
whereas having to write small bits of code for lots of apeorresponding conceptually to the components describing
plications can become wearisome, particularly when thosegeneral purpose data retrieval machine and the items it
bits are intended to perform the same task! would require to perform its task: a DataSource, a Data-
An EPICS Channel Access component has been writtdtandle, and a DataBuffer. The DataSource enumerates the
which allows CDEV applications to talk to Channel Ac-objects stored in the archive, provides lookup and search
cess without directly relying upon the EPICS code. Thisapability, and retrieves data. The DataHandle conceptu-
has the effect of moving the control system dependen@fly represents a way to identify some unique parameter
away from the user application and into the intermediarin the archive. The DataBuffer encapsulates the data for a
layer. Several EPICS dutilities, like the alarm handler angarticular DataHandle over some time range, and provides
medm have been modified to use CDEYV in lieu of Chanmethods for iterating over the contained data points.
nel Access, allowing them to be used in conjunction with The programmer interested in building XARR for use
non-EPICS control systems. with some other archive must create three C++ classes de-
The controls software group at Jefferson Lab have alstved from those named above, overriding the default be-
developed several new utilties. Zplot is a motif applicahavior with site-specific details. When the application is
tion that plots device attribute values against their coordzompiled, the appropriate class definitions are included in
nates along an accelerator. Xtract, the “X-windows Todhe main startup routine.
for Recording And Correlating Things” allows the user to
change the system in a highly configurable manner, mea- 5 CONCLUSIONS
suring various parameters along the way, resulting in data . .) o o
describing a discrete function of the stepped parameters. {hile the ultimate goal in portability is to eliminate as

this regard it is a general purpose experimentation prografuch site-specific “tweaking™ as possible, this often proves
unattainable without also decreasing the efficiency or use-

fulness of an application. The most useful sort of porta-
4 PORTABILITY THROUGH bility within an open-source environment is the kind that
OBJECT-ORIENTED DESIGN allows local programmers at various sites to acquire code

i . . .which they can easily modify to suit their own needs. For-
One of the greatest benefits of object oriented programmwtlgnately’ this naturally follows from good design and cod-

Ianguage I|k_e Cttis thqt It prowdes support for de&gnmgﬁg principles. As illustrated above, by designing code
abstraction into an application. In designing a new appli-

cation, the desired end product can be conceptualized amodularly, those portions which require modification from

S. : : :
virtual machine, comprised of distinct parts. The programs—'% to site are isolated and readily found by the local pro-

mer’s task is to forge actual software construeiases grammers. If the code is also well documented, then the

G+ 0O terminlog) o ese eneral speciicatond20% POSTTIE) ot el o confoentysuppy
The interesting thing about this process, is that it leads y P , nePIng

. e “not developed here” syndrome. Because the local code
a natural separation between the conceptual nature of the

components and their corresponding implementation. Isisolated in distinct modules, the process of upgrading to

. new versions of the software reduces to pl ing in those
At Jefferson Lab, we use the EPICS archiver to log tens W Vers! W u plugging 1

. ite-specific modules to the new source code. While all
of thousands of control system parameters continuous . , L o
. . . ese good things benefit the recipients of the “free” work,
producing massive amounts of data which are subsequer}l ; - S
: y also benefit the original developer and his site by pro-
compressed and cataloged in a locally developed database; Co . D .
Of course. once the data is nicelv orqanized. one requirading software which is easily maintainable, extensible,
U : y orga ' qUIrERd likely to remain useful through system changes.
some mechanism by which to retrieve it: a program to fa-
cilitate browsing through the archived data, and converting
it into a useful format. Because such a tool would be gen- 6 REFERENCES
erally useful to other sites, and because we anticipated thaf K. S. white, H. Shoaee, W. A. Watson, M. Wise, “The Migra-
our archiving system will change as we phase in new sub- tion of the CEBAF Accelerator Control System from TACL
systems, we decided to develop a portable system based to EPICS”,CEBAF Controls System Revie®994, Newport
upon OO design principles. News, VA.

The resulting tool (XARR: the Xwindows ARchive Re- [2] Leo R. Dalesio, et. al., “The Experimental Physics and Indus-
triever), as used at Jefferson Lab, is comprised of 3 lay- trial Control System Architecture: Past, Present, and Future”,
ers. At the top is the graphical interface, which is imple- International Conference on Accelerator and Large Experi-
mented in C++, using the Motif widget set. Beneath this Mental Physics Control Systentct. 1993.
is the database layer which catalogues the available daidl. J- Chen, G. Heyes, W. Akers, D. Wu and W. Watson III,
At the lowest level is an I/O library for reading and writ- ~ "CDEV: An Object-Oriented Class Library for Developing
ing data from and to the storage medium. Because the two 1D§;"Ce ;:70””0' Applications”,Proceedings of ICALEPCS
bottom layers are primarily specific to Jefferson Lab’s stor- Spor.

743

