A Self-Describing File Protocol for Simulation Integration and Shared Postprocessdrs

M. Borland
Advanced Photon Source, Argonne National Laboratory
9700 South Cass Avenue, Argonne, lllinois 60439 USA

Abstract each new version), and results in proliferation of nonstandard

A typical accelerator physics code uses a combination¥sions of the simulation code.
text output, unformatted output, and special-purpose graphics /N an effort to solve some of these problems, code writers
to present results to the user. Most users must learn mult@f€n Supply a special-purpose postprocessor that does what
graphics and postprocessing systems; many resort to maftiigy anticipate the user will need to do. This postprocessor
extraction of data from text output, creation of customizégdy do little more than graphics, or it may do mathematical
postprocessing programs, and even modification of the simfgerations on the data; it is unlikely to be as sophisticated in
tion code. This situation slows research, results in duplicatii¢se functions as commercially-available or generic packages.
of effort, hampers unforeseen use of simulation output, aikds also unlikely to be compatible with similar postprocessors
makes program upgrades potentially traumatic. This paper dey-other codes in terms of data formats or commands. These
cusses the design and use of a self-describing file protocol tRéttiple postprocessors frequently duplicate each other’s func-
addresses these problems. An extensive toolkit of generic p§8fs (€-9-, graphics), which wastes effort. Further, the user is
processing programs, including sophisticated graphics, "Rt free to exploit the special features of a particular postpro-
available. This system has been used for most of the data €8fSor with data from an unrelated simulation. Finally, if the
lection for Advanced Photon Source (APS) commissioningSer needs to go beyond what the supplied postprocessor

and is incorporated into a number of simulation codes. ~ allows, he encounters the problems discussed above.
This paper discusses use of the “Self Describing Data
I. INTRODUCTION Sets” (SDDS) file protocol to eliminate these problems.
The structure of a typical accelerator physics code has Il. SELF-DESCRIBING DATA

changed little since the days when the only readily available .
output was the printout. Most codes still concentrate on this The concept of self-describing data starts from the recog-
type of text-oriented output. The user wishing to postproces8'#on that a scientist typically associates a number of attributes
printout often ends up reading the data from paper or from{Vih data: 1. The name by which the data is known. 2. The
computer screen, and doing essentially manual computationdhs of the data, if any. 3. The meaning of the data (i.e., a
procedure that is reminiscent of using tables of trigonometflgScription). 4. A mathematical symbol to represent the data, if
functions and logarithms. A more sophisticated user may wiitePropriate. 5. The type of data (e.g., floating-point).
a postprocessing program that reads the printout and performsA true self-describing file protocol (SDFP) should incor-
computations. Unfortunately, the printout is almost necessamgrate these attributes. The user of self-describing data obtains
either difficult to read or else difficult to parse. The printodi® data only by name. The user need not know, for example,
typically mixes many types of data, making a robust postpihich column of a table a quantity appears in or how the data
cessor difficult to write. The user is frequently forced to resdgtformatted. This is the crucial feature of self-describing data,
to a text editor to extract the data of interest, which is tim@s it enables one to avoid the above-mentioned pitfalls.
consuming and error-prone. If the user succeeds in writingag For the purpose of discussion, imagine some data that can
postprocessor, he may find that it doesn’t work with the n qr_gan|zeq into a single table. For example, the data could be
version of the simulation code, due to changes by the simulgsition, Twiss parameters, element name, etc., along an accel-
tion's authors. This applies equally if the postprocessor §sator. Any program accessing the data would do so by name,
another simulation code, which explains why so few of t#§ing routines supplied by the creator of the SDFP. If the pro-
accelerator codes in existence today are able to use @M needed only certain data (e.g., position and horizontal
another’s output. beta function), it would request only that data. The presence of
To make a bad situation worse, the user’s effort to creatddglitional data (e.g., dispersion), would be irrelevant. Further,
parser for a postprocessor must be duplicated for every cod&eProgram need not know the source of the data—it could be
uses, since there is no standardization of text or binary form#@M any source, from direct user input into a file to output
If the user wishes to take advantage of the special feature§@f @ simulation code.
two different simulation codes, he must write two different If all of the presently-available accelerator codes that per-
parsers. Many users find it easier to modify the simulation cd@M comparable computations employed the same SDFP for
itself rather than write a postprocessor. This again maKkB§ir output, users and programs could access data without

upgrades painful (since the modifications must be maderggard for Which code it Was_from. Programs would nc_)t need to
be custom-designed to provide output to each other in order to

work together. This would allow users to combine programs in
*Work supported by U.S. Department of Energy, Office of Basic WayS not planned by the programs’ creators. The only con-
Energy Sciences, under Contract No. W-31-109-ENG-38.

straint would be that the codes used the appropriate namesfter Twiss parameters, etc. 3. Arrays: The response matrix,
guantities. (In practice, this restriction can be reduced matrices for tune and chromaticity adjustment, etc.
designing programs to request data under several different but Other self-describing protocols are less restrictive than
equivalent names.) SDDS in that the data model is more flexible. While this is
The example of Twiss parameter output is illustrative fenore powerful, it is considerably more complicated for both
another reason. Most codes that compute Twiss parametkesprogram developer and user, which probably explains why
print the results in a single large table with 132-column line=xisting SDFPs are not widely used. Experience with SDDS
This forces truncation to (typically) three to six significant figshows that there are very few instances where a more compli-
ures, in order to fit all of the data for each element on a singsted model is required. At worst, the user may need to store
row of the table. Some programs provide a second output @isparate data in different, parallel files; this actually has the
that contains the data to full precision. Using an SDFP, neitlaelvantage of making the data easier to access. Some examples
the lack of precision nor the duplication of data would be neaf-data stored in SDDS at APS will be given in later sections.
essary. Note that the user rarely looks at all of the columns Another advantage of SDDS over more complicated pro-
present in a typical printout; for the user who requires a pritdcols is that the data may be either ASCII or unformatted (i.e.,
out, a tool to take an SDFP file and create a customized prfbinary”). The SDDS header (which describes the structure of
out containing only the columns of interest would be motke data pages), is in ASCII and has a familiar namelist format.
satisfactory. Such a tool could be completely generic, so thdtiis a simple matter to create an SDDS file using print state-
could be used with any program compliant with the SDFP. ments in a program, giving immediate access to a wide range
of SDDS tools. The SDDS header has features to make it easy
. THE SDDS DATA MODEL to convert existing text data into SDDS protocol; often, one

The principles elucidated in the previous section hataerely creates a header and attaches it to the top of the file.
been implemented in the SDDS protocol. Any SDFP imp@hese statements are not true of other SDFPs that | know of.
mentation makes assumptions about what type of data will be '€ SDDS header incorporates a protocol and version
stored and how it will be arranged. These assumptions cdfentification string, allowing determination that a given file is
prise the data model for the protocol. At the highest level, tfeSPDS protocol, and providing the version of the protocol.
SDDS model organizes data into a series of “data pages.” EAB}$ Permits upgrades of the protocol itself without disrupting
page of any file must contain the same elements, but may ¢&if"S Py making existing data or programs obsolete.

ta!n d|fferen_t specific data. For exqmple, each page could con- IV. THE SDDS TOOLKIT
tain the Twiss parameters for a different accelerator, or for a
different tuning of the same accelerator. A further break with traditional methods in accelerator

Within each page, the following classes of data are recaimulation is the introduction of the toolkit concept for post-
nized: 1. Tabular data, consisting of an arbitrary number pocessing [1]. A “toolkit” is a group of independent but coop-
rows of mixed-type data. The data in the table is referred todnative programs. Traditionally, postprocessing has involved
the name of the column. The same columns are expectedwdting single- or few-purpose programs devoted to a single
each page of the file. 2. Array data, where each element isiafulation code, in spite of the fact that the operations per-
fixed but arbitrary dimension (i.e., an arbitrary number of arr&gyrmed by many postprocessors are essentially identical. With
indices is allowed). Arrays are accessed separately, but mayHeeuse of SDDS, it makes more sense to write generic pro-
placed in groups. The size of an array may vary from pagegtams that perform operations on data referred to by name.
page. 3. Parameter data, consisting of single values that mayWhile toolkit programs are shared by users, development
either be fixed throughout the file, or vary from page to pageisAdecentralized. The only requirement for an SDDS toolkit
parameter is essentially an array containing a single value, jmttgram is that it read and/or write SDDS files, so anyone may
has simplified access. contribute programs. This is an advantage over “all-in-one”

Any element of these data classes may have one of the palekages, which force the user to import data into a single pro-
lowing C-language data types: float, double, short, long, chgiam and work within a centrally-controlled environment. In
and char *. These are, respectively, single and double-precigiontrast, toolkit programs are combined through use of the
floating point, short and long integers, single characters, asminmand shell and through command “scripts”; often, several
character strings. All of these types may be mixed in the talpnegrams are used sequentially on one or more data files.
lar data section, but each column must contain data of fix@@DS-compliant programs automatically work together by
type. Note that SDDS has no restrictions on the numbersvisfue of the common “language” of SDDS protocol, with little
each type of element, on the length of the tabular data, on @éh@o planning on the part of code developers.
dimension of arrays, on the size of arrays, or on the number of The SDDS Toolkit is a growing group of about 35 pro-
characters in string data elements. grams that use SDDS files. Most accept SDDS input and pro-

To continue the example of storing Twiss parameters, otiéce SDDS output. In contrast to recent trends toward
might create an SDDS file containing the following: 1. Pararmefficient, tedious, and restrictive graphical user interfaces
eters: The name of the lattice, the tunes, the chromaticities, (B&Is), existing SDDS programs are accessed from the com-
acceptances, etc. 2. Columns: The element name, the positiemyd line. While a GUI is sometimes helpful to the novice or

occasional user, it is rarely of benefit to the serious user excgpge simulation.

when the program is inherently graphical. Further, command- spiffe [5] is an electromagnetic field and particle-in-cell
line tools can be included in scripts that require no user interacde used for rf gun simulation. Output includes snapshots of
tion. This permits assembly of custom postprocessing copafticle coordinates at constant time or position, electromag-
mands for repetitious tasks. Much of the data processing ffetic fields at probe points, electromagnetic field maps, and the
APS commissioning is handled by such scripts [2]. cavity boundary.

Space permits mentioning only a portion of the Toolkit: All three programs use ongddsplotandsddscontourfor
sddsplotis a flexible, commercial-quality, device-independemraphics. None requires any special-purpose postprocessing
graphics progransddscontouris a graphics program for mak-codessddsprocessan be used to translate the differing parti-
ing contour and density maps of data. (Both of these are cane- coordinate conventions of the three codes to permit track-
mand-line driven, but bring up a GUI under X Windowsing shower or spiffe output with elegant or usingelegant
sdds2spreadsheeand sddsprintout convert SDDS output to output as input tghower.
spreadsheet input or customized printostdsprocessis a
powerful data processing program that, among other featuryé; SDDS-COMPLIANT EPICS APPLICATIONS
permits computation, scanning, editing, statistics, and selection The control system used for the APS, known as the Exper-
operationssddsgfitandsddsexpfitdo Gaussian and exponenimental Physics and Industrial Control System (EPICS) [6], is
tial fits. sddsfft does Fast-Fourier Transfornmsddshistand uysed at a number of accelerator facilities in the United States.
sddshist2d do one- and two-dimensional histogramminga number of “add-on” applications that use EPICS facilities
sddscorrelate analyzes data for correlations, whéddsout- have been de\/e|0ped, and are used for APS Commissioning
lier eliminates statistical outliersddssortsorts data by multi- and Operations_ For examp@dsexperimentis a program
ple user-specified criterissddsxref transfers data betweenthat performs generic experiments on EPICS process variables
files, with optional cross-referencingsddschanges and (pvs); this includes changing PVs, reading back and analyzing
sddsenvelopeanalyze data over multiple data pagekiscon- Pys, and executing subprocesses. One use is measurement of
vert converts between binary and ASCII modes, as well asponse matricesddsmonitor andsddsvmonitorare EPICS
renaming and deleting elements. monitoring programs, with sophisticated features like glitch-

V. SDDS-COMPLIANT SIMULATION CODES 2" eventtriggered datalogging.’ _
ith very few exceptions, SDDS is used for all accelera-

A number of simulation codes have been converted ttor commissioning data. For example, SDDS is used for: sav-
write and/or read SDDS files. Three distinct related prograing and restoring machine configurations; magnet conditioning
are highlighted, with mention of how SDDS integrates them.instructions; GPIB device configurations; data from digital

elegant[3] is an accelerator simulation code using matrigscilloscopes and spectrum analyzers; machine history data;
methods (up to second order), canonical integration, aexperimental data collected from process variables; data for
numerical integration, with MAD-format lattice inpelegant generalized feedback on process variables [2]; and response
provides up to 25 different SDDS output files containingatrices (fromelegantor experiment) for orbit correction.
widely varying types of data. While producing many separate
files may seem cumbersome, it greatly simplifies the use of theV”- OBTAINING CODE AND MANUALS
data and the internal organization of the simulation. A typical A distribution version of the SDDS library and Toolkit is
simulation would result in the production of several of these expected to be available shortly after conference time. Manuals

For example, one could simulate a transport line with il be available as hypertext via World Wide Web, and in
arbitrary number of random perturbation sets. For each perfugstscript format. Details may be obtained by contacting the
bation setelegantcould output the Twiss parameters and thguthor at borland@aps.anl.gov.
transfer matrix, beam sizes and centroids from tracking, parti-
cle coordinates at specified locations, information on particles VIIl. REFERENCES
ipst on apertures, trajectory predictions before and a_lfter corifﬁ- M. Borland, “A High-Brightness Thermionic Microwave
ion, and moreelegantalso accepts SDDS data as input. For N : .

. : Gun,” Stanford Ph.D. Thesis, 1991, appendix A.
example, if one asks for logs of random perturbations used ci&i L. Emery, “Commissioning Software Tools at the
ing a simulation, one can haeéegantread the perturbations ' ' R)

Advanced Photon Source,” these proceedings.

for use in another simulation; one can ge_nerate the perturbai@rn M. Borland, “Users Manual foelegant” APS LS-231,
input by other means, e.g., from magnetic measurement or sut- May 6, 1993

vey dataelegantwnl accept its own_pa.rtlcle coordinate outpuigf']s L. Emery, “Beam Simulation and Radiation Dose Calcu-
as input, allowing multistage tracking; the same output can lation at the Advanced Photon Source vatiower an

postprocessed with any SDDS tool, or examined graphically EGS4 Interface,” these proceedings

with sddsplot . . 5] M. Borland, unpublished program.
shower[4] is a C program that provides an easy-10-Uggy | " "nojecio “et. al., “EPICS Architecture,” ICALEPS

interface to theEGS4 (Electron-Gamma Shower) program. i
shower not only produces SDDS output of multi-specie 1991, pp. 278-281, 1991.
shower products, but will also read such output to allow multi-

