
Abstract

A typical accelerator physics code uses a combination of
text output, unformatted output, and special-purpose graphics
to present results to the user. Most users must learn multiple
graphics and postprocessing systems; many resort to manual
extraction of data from text output, creation of customized
postprocessing programs, and even modification of the simula-
tion code. This situation slows research, results in duplication
of effort, hampers unforeseen use of simulation output, and
makes program upgrades potentially traumatic. This paper dis-
cusses the design and use of a self-describing file protocol that
addresses these problems. An extensive toolkit of generic post-
processing programs, including sophisticated graphics, is
available. This system has been used for most of the data col-
lection for Advanced Photon Source (APS) commissioning,
and is incorporated into a number of simulation codes.

I. INTRODUCTION

The structure of a typical accelerator physics code has
changed little since the days when the only readily available
output was the printout. Most codes still concentrate on this
type of text-oriented output. The user wishing to postprocess a
printout often ends up reading the data from paper or from a
computer screen, and doing essentially manual computations, a
procedure that is reminiscent of using tables of trigonometric
functions and logarithms. A more sophisticated user may write
a postprocessing program that reads the printout and performs
computations. Unfortunately, the printout is almost necessarily
either difficult to read or else difficult to parse. The printout
typically mixes many types of data, making a robust postpro-
cessor difficult to write. The user is frequently forced to resort
to a text editor to extract the data of interest, which is time-
consuming and error-prone. If the user succeeds in writing a
postprocessor, he may find that it doesn’t work with the next
version of the simulation code, due to changes by the simula-
tion’s authors. This applies equally if the postprocessor is
another simulation code, which explains why so few of the
accelerator codes in existence today are able to use one
another’s output.

To make a bad situation worse, the user’s effort to create a
parser for a postprocessor must be duplicated for every code he
uses, since there is no standardization of text or binary formats.
If the user wishes to take advantage of the special features of
two different simulation codes, he must write two different
parsers. Many users find it easier to modify the simulation code
itself rather than write a postprocessor. This again makes
upgrades painful (since the modifications must be made to

each new version), and results in proliferation of nonstandard
versions of the simulation code.

In an effort to solve some of these problems, code writers
often supply a special-purpose postprocessor that does what
they anticipate the user will need to do. This postprocessor
may do little more than graphics, or it may do mathematical
operations on the data; it is unlikely to be as sophisticated in
these functions as commercially-available or generic packages.
It is also unlikely to be compatible with similar postprocessors
for other codes in terms of data formats or commands. These
multiple postprocessors frequently duplicate each other’s func-
tions (e.g., graphics), which wastes effort. Further, the user is
not free to exploit the special features of a particular postpro-
cessor with data from an unrelated simulation. Finally, if the
user needs to go beyond what the supplied postprocessor
allows, he encounters the problems discussed above.

This paper discusses use of the “Self Describing Data
Sets” (SDDS) file protocol to eliminate these problems.

II. SELF-DESCRIBING DATA

The concept of self-describing data starts from the recog-
nition that a scientist typically associates a number of attributes
with data: 1. The name by which the data is known. 2. The
units of the data, if any. 3. The meaning of the data (i.e., a
description). 4. A mathematical symbol to represent the data, if
appropriate. 5. The type of data (e.g., floating-point).

A true self-describing file protocol (SDFP) should incor-
porate these attributes. The user of self-describing data obtains
the data only by name. The user need not know, for example,
which column of a table a quantity appears in or how the data
is formatted. This is the crucial feature of self-describing data,
as it enables one to avoid the above-mentioned pitfalls.

For the purpose of discussion, imagine some data that can
be organized into a single table. For example, the data could be
position, Twiss parameters, element name, etc., along an accel-
erator. Any program accessing the data would do so by name,
using routines supplied by the creator of the SDFP. If the pro-
gram needed only certain data (e.g., position and horizontal
beta function), it would request only that data. The presence of
additional data (e.g., dispersion), would be irrelevant. Further,
the program need not know the source of the data—it could be
from any source, from direct user input into a file to output
from a simulation code.

 If all of the presently-available accelerator codes that per-
form comparable computations employed the same SDFP for
their output, users and programs could access data without
regard for which code it was from. Programs would not need to
be custom-designed to provide output to each other in order to
work together. This would allow users to combine programs in
ways not planned by the programs’ creators. The only con-

A Self-Describing File Protocol for Simulation Integration and Shared Postprocessors*
M. Borland

Advanced Photon Source, Argonne National Laboratory
9700 South Cass Avenue, Argonne, Illinois 60439 USA

__
* Work supported by U.S. Department of Energy, Office of Basic
Energy Sciences, under Contract No. W-31-109-ENG-38.

straint would be that the codes used the appropriate names for
quantities. (In practice, this restriction can be reduced by
designing programs to request data under several different but
equivalent names.)

The example of Twiss parameter output is illustrative for
another reason. Most codes that compute Twiss parameters
print the results in a single large table with 132-column lines.
This forces truncation to (typically) three to six significant fig-
ures, in order to fit all of the data for each element on a single
row of the table. Some programs provide a second output file
that contains the data to full precision. Using an SDFP, neither
the lack of precision nor the duplication of data would be nec-
essary. Note that the user rarely looks at all of the columns
present in a typical printout; for the user who requires a print-
out, a tool to take an SDFP file and create a customized print-
out containing only the columns of interest would be more
satisfactory. Such a tool could be completely generic, so that it
could be used with any program compliant with the SDFP.

III. THE SDDS DATA MODEL

The principles elucidated in the previous section have
been implemented in the SDDS protocol. Any SDFP imple-
mentation makes assumptions about what type of data will be
stored and how it will be arranged. These assumptions com-
prise the data model for the protocol. At the highest level, the
SDDS model organizes data into a series of “data pages.” Each
page of any file must contain the same elements, but may con-
tain different specific data. For example, each page could con-
tain the Twiss parameters for a different accelerator, or for a
different tuning of the same accelerator.

Within each page, the following classes of data are recog-
nized: 1. Tabular data, consisting of an arbitrary number of
rows of mixed-type data. The data in the table is referred to by
the name of the column. The same columns are expected for
each page of the file. 2. Array data, where each element is of
fixed but arbitrary dimension (i.e., an arbitrary number of array
indices is allowed). Arrays are accessed separately, but may be
placed in groups. The size of an array may vary from page to
page. 3. Parameter data, consisting of single values that may
either be fixed throughout the file, or vary from page to page. A
parameter is essentially an array containing a single value, but
has simplified access.

Any element of these data classes may have one of the fol-
lowing C-language data types: float, double, short, long, char,
and char *. These are, respectively, single and double-precision
floating point, short and long integers, single characters, and
character strings. All of these types may be mixed in the tabu-
lar data section, but each column must contain data of fixed
type. Note that SDDS has no restrictions on the numbers of
each type of element, on the length of the tabular data, on the
dimension of arrays, on the size of arrays, or on the number of
characters in string data elements.

To continue the example of storing Twiss parameters, one
might create an SDDS file containing the following: 1. Param-
eters: The name of the lattice, the tunes, the chromaticities, the
acceptances, etc. 2. Columns: The element name, the position,

the Twiss parameters, etc. 3. Arrays: The response matrix,
matrices for tune and chromaticity adjustment, etc.

Other self-describing protocols are less restrictive than
SDDS in that the data model is more flexible. While this is
more powerful, it is considerably more complicated for both
the program developer and user, which probably explains why
existing SDFPs are not widely used. Experience with SDDS
shows that there are very few instances where a more compli-
cated model is required. At worst, the user may need to store
disparate data in different, parallel files; this actually has the
advantage of making the data easier to access. Some examples
of data stored in SDDS at APS will be given in later sections.

Another advantage of SDDS over more complicated pro-
tocols is that the data may be either ASCII or unformatted (i.e.,
“binary”). The SDDS header (which describes the structure of
the data pages), is in ASCII and has a familiar namelist format.
It is a simple matter to create an SDDS file using print state-
ments in a program, giving immediate access to a wide range
of SDDS tools. The SDDS header has features to make it easy
to convert existing text data into SDDS protocol; often, one
merely creates a header and attaches it to the top of the file.
These statements are not true of other SDFPs that I know of.

The SDDS header incorporates a protocol and version
identification string, allowing determination that a given file is
in SDDS protocol, and providing the version of the protocol.
This permits upgrades of the protocol itself without disrupting
users by making existing data or programs obsolete.

IV. THE SDDS TOOLKIT

A further break with traditional methods in accelerator
simulation is the introduction of the toolkit concept for post-
processing [1]. A “toolkit” is a group of independent but coop-
erative programs. Traditionally, postprocessing has involved
writing single- or few-purpose programs devoted to a single
simulation code, in spite of the fact that the operations per-
formed by many postprocessors are essentially identical. With
the use of SDDS, it makes more sense to write generic pro-
grams that perform operations on data referred to by name.

While toolkit programs are shared by users, development
is decentralized. The only requirement for an SDDS toolkit
program is that it read and/or write SDDS files, so anyone may
contribute programs. This is an advantage over “all-in-one”
packages, which force the user to import data into a single pro-
gram and work within a centrally-controlled environment. In
contrast, toolkit programs are combined through use of the
command shell and through command “scripts”; often, several
programs are used sequentially on one or more data files.
SDDS-compliant programs automatically work together by
virtue of the common “language” of SDDS protocol, with little
or no planning on the part of code developers.

The SDDS Toolkit is a growing group of about 35 pro-
grams that use SDDS files. Most accept SDDS input and pro-
duce SDDS output. In contrast to recent trends toward
inefficient, tedious, and restrictive graphical user interfaces
(GUIs), existing SDDS programs are accessed from the com-
mand line. While a GUI is sometimes helpful to the novice or

occasional user, it is rarely of benefit to the serious user except
when the program is inherently graphical. Further, command-
line tools can be included in scripts that require no user interac-
tion. This permits assembly of custom postprocessing com-
mands for repetitious tasks. Much of the data processing for
APS commissioning is handled by such scripts [2].

 Space permits mentioning only a portion of the Toolkit:
sddsplot is a flexible, commercial-quality, device-independent
graphics program.sddscontouris a graphics program for mak-
ing contour and density maps of data. (Both of these are com-
mand-line driven, but bring up a GUI under X Windows.)
sdds2spreadsheetand sddsprintout convert SDDS output to
spreadsheet input or customized printouts.sddsprocessis a
powerful data processing program that, among other features,
permits computation, scanning, editing, statistics, and selection
operations.sddsgfit andsddsexpfit do Gaussian and exponen-
tial fits. sddsfft does Fast-Fourier Transforms.sddshist and
sddshist2d do one- and two-dimensional histogramming.
sddscorrelateanalyzes data for correlations, whilesddsout-
lier eliminates statistical outliers.sddssort sorts data by multi-
ple user-specified criteria.sddsxref transfers data between
files, with optional cross-referencing.sddschanges and
sddsenvelope analyze data over multiple data pages.sddscon-
vert converts between binary and ASCII modes, as well as
renaming and deleting elements.

V. SDDS-COMPLIANT SIMULATION CODES

A number of simulation codes have been converted to
write and/or read SDDS files. Three distinct related programs
are highlighted, with mention of how SDDS integrates them.

elegant[3] is an accelerator simulation code using matrix
methods (up to second order), canonical integration, and
numerical integration, with MAD-format lattice input.elegant
provides up to 25 different SDDS output files containing
widely varying types of data. While producing many separate
files may seem cumbersome, it greatly simplifies the use of the
data and the internal organization of the simulation. A typical
simulation would result in the production of several of these.

For example, one could simulate a transport line with an
arbitrary number of random perturbation sets. For each pertur-
bation set,elegant could output the Twiss parameters and the
transfer matrix, beam sizes and centroids from tracking, parti-
cle coordinates at specified locations, information on particles
lost on apertures, trajectory predictions before and after correc-
tion, and more.elegant also accepts SDDS data as input. For
example, if one asks for logs of random perturbations used dur-
ing a simulation, one can haveelegant read the perturbations
for use in another simulation; one can generate the perturbation
input by other means, e.g., from magnetic measurement or sur-
vey data.elegant will accept its own particle coordinate output
as input, allowing multistage tracking; the same output can be
postprocessed with any SDDS tool, or examined graphically
with sddsplot.

shower [4] is a C program that provides an easy-to-use
interface to theEGS4 (Electron-Gamma Shower) program.
shower not only produces SDDS output of multi-specie
shower products, but will also read such output to allow multi-

stage simulation.
spiffe [5] is an electromagnetic field and particle-in-cell

code used for rf gun simulation. Output includes snapshots of
particle coordinates at constant time or position, electromag-
netic fields at probe points, electromagnetic field maps, and the
cavity boundary.

All three programs use onlysddsplot andsddscontour for
graphics. None requires any special-purpose postprocessing
codes.sddsprocess can be used to translate the differing parti-
cle coordinate conventions of the three codes to permit track-
ing shower or spiffe output with elegant, or usingelegant
output as input toshower.

VI. SDDS-COMPLIANT EPICS APPLICATIONS

The control system used for the APS, known as the Exper-
imental Physics and Industrial Control System (EPICS) [6], is
used at a number of accelerator facilities in the United States.
A number of “add-on” applications that use EPICS facilities
have been developed, and are used for APS commissioning
and operations. For example,sddsexperiment is a program
that performs generic experiments on EPICS process variables
(PVs); this includes changing PVs, reading back and analyzing
PVs, and executing subprocesses. One use is measurement of
response matrices.sddsmonitorand sddsvmonitorare EPICS
monitoring programs, with sophisticated features like glitch-
and event-triggered data logging.

With very few exceptions, SDDS is used for all accelera-
tor commissioning data. For example, SDDS is used for: sav-
ing and restoring machine configurations; magnet conditioning
instructions; GPIB device configurations; data from digital
oscilloscopes and spectrum analyzers; machine history data;
experimental data collected from process variables; data for
generalized feedback on process variables [2]; and response
matrices (fromelegant or experiment) for orbit correction.

VII. OBTAINING CODE AND MANUALS

A distribution version of the SDDS library and Toolkit is
expected to be available shortly after conference time. Manuals
will be available as hypertext via World Wide Web, and in
Postscript format. Details may be obtained by contacting the
author at borland@aps.anl.gov.

VIII. REFERENCES

[1] M. Borland, “A High-Brightness Thermionic Microwave
Gun,” Stanford Ph.D. Thesis, 1991, appendix A.

[2] L. Emery, “Commissioning Software Tools at the
Advanced Photon Source,” these proceedings.

[3] M. Borland, “Users Manual forelegant,” APS LS-231,
May 6, 1993.

[4] L. Emery, “Beam Simulation and Radiation Dose Calcu-
lation at the Advanced Photon Source withshower, an
EGS4 Interface,” these proceedings.

[5] M. Borland, unpublished program.
[6] L. R. Dalesio, et. al., “EPICS Architecture,” ICALEPS

1991, pp. 278-281, 1991.

