
*An on-line accelerator modeling facility is currently un-
der development at CEBAF. The model server, which is inte-
grated with the EPICS control system, provides coupled and
2nd-order matrices for the entire accelerator, and forms the
foundation for automated model-based control and diagnostic
applications. Four types of machine models are provided, in-
cluding design, golden or certified, live, and scratch or simu-
lated model. Provisions are also made for the use of multiple
lattice modeling programs such as DIMAD, PARMELA, and
TLIE. Design and implementation details are discussed.

I. INTRODUCTION

CEBAF is a 4 GEV electron accelerator facility which is
in the final stages of commissioning. It consists of two 400
MeV superconducting linacs with a 5 pass beam recirculation
system. The facility is capable of simultaneously serving three
experimental halls with beams of differing energies.

The goal of delivering high quality beams to experiment-
ers requires the availability of appropriate control, diagnos-
tics, and monitoring functions to direct the complex operation
of the accelerator. In addition, the efficient operation of a
complex accelerator requires the automation of as many rou-
tine machine functions as possible. This would assist in
achieving the goal of operators acting as accelerator “pilots”,
rather than accelerator “mechanics”.

An early decision in the design phase of the control sys-
tem was to base all high level functions involving machine
setup and operation on accelerator models rather than resort-
ing to a “look-and adjust” method of operation. This was
deemed particularly crucial during the commissioning phase
of CEBAF, when it was required to reconcile the machine be-
havior with its model.

II. ARTEMIS MODEL ENVIRONMENT

The Accelerator Real TimE Modeling Information Server
(ARTEMIS), currently under development, will be a central
Server/Client facility in the CEBAF accelerator control sys-
tem, providing various model data (transfer matrices, twiss
parameters, etc.) and supporting computations (e.g. quad
strength calculation for matching) for all model-driven facili-
ties, including LEM (Linac Energy Management) software,
beam steering, feedback, and beam diagnostic and optimiza-
tion procedures [Fig. 1]. Centralizing the model calculations
provides a uniform and consistent data collection for these and
other applications, while eliminating the need for redundant
calculations by different application software.

ARTEMIS will also be interfaced with on-line facilities
such as Tcl/Tk and MATLAB, allowing for the rapid proto-
typing of model-based algorithms and applications before

*Supported by U.S. DOE Contract DE-AC05-84-ER40150

they are made a permanent part of the control system.

Figure 1: Modeling Environment Overview

Objectives
The main objective for ARTEMIS is to make available

timely and accurate lattice information for use by any acceler-
ator application software. Timeliness implies that the model
must reflect changes in machine parameters at an acceptable
rate. This is achieved through several updating mechanisms:

• Periodic updating of model(s) at a given rate.
• Model updates triggered by an external event.
• User initiated model calculations (on-demand model-

ing).
In addition, model accuracy demands correct treatment of all
machine components, to the degree required by applications.
ARTEMIS will provide availability of the following:

• Generation of first and second-order transfer functions.
• Provisions for inclusion of higher order models as

needs dictate.
• Correct treatment of the acceleration process in the

linac cavities, including effects of adiabatic damping
and cavity focusing effects.

• Non-relativistic effects (handled by PARMELA inter-
face).

• Spin polarization tracking.
 Input to ARTEMIS will be the accelerator layout of all

elements (using MAD standard for element definitions) in-
cluding bends, quadrupoles, sextuples, correctors, BPMs, and
viewers. This information includes device setpoints, position
in accelerator coordinates, x, y and z, and path length. Com-
mands supported by the server include:

• Retrieval of lattice functions.

MODEL
SERVER

LEM

STEERING

FEEDBACK

OPTICS

 LOW
 LEVEL
 APPLICATIONS

OPERATORS &
 USERS

OTHER
HIGH LEVEL

APPLs

INTERFACE

(TK/TCL

ONLINE MODELING

MATLAB)

ARTEMIS

INTEGRATED ON-LINE ACCELERATOR MODELING
AT CEBAF

B. A. Bowling, H. Shoaee, J. Van Zeijts, S. Witherspoon, W. Watson
 CEBAF, Newport News, VA 23606 USA

• General first and second-order transfer matrices.
• Retrieve hardware information, e.g. list of quadrupoles,

BPMs, etc. in a given region, with the ability to use wild-
cards for specifying a list of devices.

• Update current model, i.e., using current setpoints, cal-
culate machine parameters.

• Update the machine to the reflect the desired model.
ARTEMIS will provide the capability to generate four dis-

tinct machine model classes:
• Golden model: this includes a consistent set of machine

parameters that have been verified and deemed reason-
able by an authorized expert. It is anticipated that this is
the model that will be used by many control applications.

• Design model: this is a machine model based on the
baseline design and setpoints of the accelerator.

• Current (pseudo-real-time) model: this is a machine
model representing the latest or current accelerator set-
points, the update mechanism may be autonomous or
user initiated. This form has utility for control codes
which perform changes in lattice parameters.

• Simulation model: This model reflects the outcome of
what-if scenarios as applied to the accelerator lattice.
Possible applications include investigation of stray mag-
netic fields, focusing errors, injection errors, etc.

The objective of allowing ARTEMIS to exist in several
distinct forms requires that the interface be available to all
forms of software, preferably utilizing reusable code. This will
be achieved by the EPICS Device API (known as cdev), cur-
rently under development at CEBAF. This layer provides any
client access to the previously-defined model types, as well as
to control system parameters (via. channel access), database in-
formation, etc., all using a cohesive interface. ARTEMIS will
act as a server process to the Device API.

III. THE MODEL DATABASE

The CEBAF beamlines are stored in an object oriented da-
tabase. The commercial package chosen for use as the central-
ized database is ObjectStore. An object-oriented database was
chosen over the more conventional relational form due to the
decision to employ an object-oriented approach to the design
and implementation on ARTEMIS. Typical accelerator beam-
lines lend themselves naturally to this approach, and most exist-
ing accelerator codes utilize the concepts of object-oriented
design. For example, the definition of a FODO (Focusing-De-
focusing) cell can be considered as an object, and many cells
can be ordered together forming a collection known as a beam-
line, etc. One defines the classes, using inheritance, and these
structures are used directly by the database. These same classes
will be used in the actual ARTEMIS server, as well, exploiting
reusability of code.

 This database is automatically generated from the same set
of input files that are used by CEBAF physicists to define and
study the accelerator lattice. These files use the "standard"
(MAD style) notation for defining beamline and element prop-
erties. The object-oriented class breakdown for ARMTEMIS is
as follows: an element is a generic beam line component that
covers a physical entity on the beamline, such as a magnet, a
beam position monitor, an accelerating cavity, a marker, a drift

space, etc. The elements attributes have been characterized as
layout specific information, and conditional or calculated infor-
mation.

Figure 2 illustrates the C++ classes defined for the input
lattice definitions. The basic building block is thebeamElement
class, representing an element as defined above. The
beamElement class inherits from the classbmlnCondition and
references static information about a beam element via the
bmlnLayout class. This class serves as a base class for each par-
ticular element type. The information contained in each element
is dependent on element type.

Figure 2: ARTEMIS Class Inheritance Structure

ThebmlnCondition class is associated with every element.
It maintains the “physics” of the element, such as lattice func-
tions and transfer matrices, initial lattice conditions, element
optical strength, beam momentum, etc. A matrix class is refer-
enced here in order to take advantage of existing C++ matrix li-
braries.

ThebmlmLayout class contains static information about an
element defined in the lattice. The name field identifies the ele-
ment to the model, and is unique throughout a section, which is
defined as an ordered collection of elements. The class also
maintains a unique EPICS cntrlid control system identifier.
Physical information, such as element length, position, mis-
alignment, etc., are also included in this class definition.

The smallest object that ARTEMIS server will operate
upon is a beamline section, defined as an ordered collection of
beam elements (beamElement). The beamline section class in-
herits from abmlnSet collection of beam elements. Each sec-
tion also includes an unique identifier used for access purposes.
Initial conditions for matrix, Twiss, etc. are also maintained for
the use of section matching.

The beamline class inherits from abmlnSet collection of
beamSect. This is an ordered collection of beam sections. AR-
TEMIS will have the ability to load and/or save beamlines, as
well as sections. ARTEMIS can also create a beamline by join-
ing beam sections.

Section methodmadCr8db is designed to download, to the
database, a beam section from a MADhardwareoutput com-
mand. Drifts are concatenated and given unique names based on
position in the accelerator in order to reduce unneeded ele-
ments. Complimentary, beamline method,dbCr8mad, can take

bmlnCondition
beamElement ->bmlnLayout

Magnet
Sext
Quad
Dipole
Gkick

Hkick
Vkick

Monitor
BPM
Drift

CebCav
Marker

a beamline and construct a MAD input lattice deck for use with
existing accelerator codes, such as DIMAD. The desire is to
create an environment, using ObjectStore, which maintains all
lattice information useful for the CEBAF project.

IV. MODEL SERVER

The server section of ARTIMIS is illustrated in figure 3. It
consists of several subassemblies: a connection to the Object-
Store lattice database which performs the input-output lattice
management for the server, a client communications section
utilizing the EPICS Dev-API and ACE socket services, the ac-
tual server process ART, GenX model engine controller pro-
cess, and CAUListener which provides the interface to EPICS
network service. The specific global organization, object-ori-
ented design approach, and use of C++ for implementation, was
chosen for several reasons. The first is rapid server response to
client connections and requests, which led to the use of multiple
processes and the centralized shared memory segment. This ar-
rangement allows GenX, the model engine process, to perform
updates to model sections concurrently with ART server opera-
tions, improving client response time. Another benefit of the
use of object-oriented approach during the design phase of AR-
TEMIS was that it allowed for independent design efforts for
each object once the object interfaces were defined.

As stated above, GenX is used to perform the computation-
ally intensive transfer matrices generation and propagation. The
ARTEMIS server process performs the construction of Twiss
parameters, sigma matrices, transfer matrix multiplication, ray
propagation, polarization tracking, and response matrices, all of
which pose a smaller computational burden, and can be built
upon previously-calculated GenX transfer matrices.

Figure 3: ARTEMIS Server Architecture

Figure 4 is a block diagram of the C++ classes used in the
ARTEMIS server process. These structures maintain client
connection information, GenX process control, management
over the shared lattice objects (from ObjectStore), and manage-

ART Server

ACE Socket

GENX

SmemID

SmemIDSocket

Shared Lattice Objects

OODB

CAUListener

Socket

SmemID

Glue ClassesSocket

MEM - MULTX

MEM - TWISS

MEM - SIGMA

MEM - RESPONSE

MEM - HARDWARE

MEM - RAY

MEM - SPIN

To DevAPI Clients

ment of computed data objects, such as Twiss parameters.
The object-oriented approach also allows for the general

reusability of existing accelerator codes. For example, the
GenX process consists of classes for memory interface and
communication, and an interface to a modeling engine. The en-
gines chosen for CEBAF are DIMAD and PARMELLA, but the
interface to GenX is sufficiently defined such that practically
any modeling code can be interfaced. The class definitions pro-
vide constructor routines which handle many of the overhead
functions usually performed by modeling codes, such as lattice
generation and management, and model computation I/O. The
addition of a new accelerator model would consist of creating
the appropriate placeholders in the shared lattice objects, and
providing the interface into GenX. An example is the concur-
rent use of PARMELLA for modeling the CEBAF injector re-
gion and DIMAD for the remainder of the machine, all under
the control of one ARTEMIS server.

Figure 4: ARTEMIS Class Definitions

V. ARTEMIS STATUS

Work is currently underway on implementation of the ob-
ject-oriented database and the ARTEMIS server. First level
testing is expected in June, 1995, which will include integration
with DIMAD and the cdev device API.

V. REFERENCES

[1] J. Kewisch et al.,"Accelerator simulation and opera-
tion via identical operational interfaces,"Proceedings of the
fourtheenth biennial Particle Accelerator Conference on Accel-
erator Science and Technology, May 1991, p. 1443.

[2] M. Bickley et al.,"Managing control algorithms with
an object-oriented database,"Proceedings of the sixteenth bi-
ennial Particle Accelerator Conference on Accelerator Science
and Technology, May 1995.

Class MsMasterList

Class GenXCollection

Class GenXInstance

Class ClientCollection

Class SectCollection Class Sect

Class Client

Class TwissCollection

Class MultXCollection

Class TwissArea

Class MultArea

Class SigmaAreaClass SigmaCollection

Class ResponseCollection Class ResponseArea

Class HwpntCollection Class HwpntArea

Class RayAreaClass RayCollection

Class SpinAreaClass SpinCollectionArt Server Class Definitions

