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Abstract

Tuning and controlling particle accelerators is time
consuming and expensive. Inherently nonlinear, the control
problem is one to which conventional methods cannot
satisfactorily be applied. Advanced information
technologies such as expert systems and neural networks
have been applied separately to the problem, with isolated
success. Few, if any, of these advanced information
technologies have been applied for general use or in a
manner useful to multiple accelerator installations. We
discuss results of coupling neural network and expert
systems technology to solve several standard accelerator
tuning problems based on realistic simulations. We also
examine the effectiveness of additional heuristic search
techniques such as genetic algorithms. Finally, we show
the integration of this hybrid Al system with an existing
general-purpose control system.

Project Overview

The goal of this project is to develop a very flexible,
intelligent controller that can reduce the tuning time for a
particle accelerator and can develop “better” tunes than
are now achieved by human operators. Additionally, the
intelligent controller should maintain the tune with smaller
deviations than are currently exhibited. Various approaches
have been taken to automate the control of accelerators
[1,2,3], with varied degrees of success. Generally, most
effort has been directed toward solving problems for a
particular facility and little effort has been directed to
developing more general solutions applicable to a number
of different accelerator facilities. This paper reports the
early status of this project after the first phase of the
research.

The architectural framework for the controller is an expert
system that guides more specialized controllers based on
the state of the system and the tuning goal. We developed
a reglistic simulation environment to test the controller
operation. We have examined several types on controllers,
including back propagation neural networks, fuzzy logic
controller, analytic based tuning by the expert system, and
genetic algorithm tuners.

Steering, a standard zero-order problem, is one of the initial
tasks of a beamline tuner. We first considered the basic
situation in which steering was controlled by two steering
magnets (SMs) separated by some distance. Two beam
position monitors (BPMs) downstream of the steerers
monitored the effect of the steerers. Steering must take into
account beamline alignment, electronic offset and drift,

and downstream tuning requirements. In general, there is
jitter in the initial beam coordinates with some frequency.
Beam-source mechanical and electrical variation causes
this jitter, which limits steering accuracy.

Another basic element of beam transport is the periodic
line for focusing. Beam root mean square (rms) sizes are
measured on profile monitors (PMs), which directly
measure intensity distribution. These PMs, usually wire
scanners, contain inherent inaccuracies due to beam
fluctuation during measurement and component error. The
relationship between quadrupole settings and beam profile
is nonlinear, making accurate tuning difficult even for
human operators.

Accelerator Simulation

We began by developing a program to simulate the steering
scenario for initial prototyping of the intelligent controller.
This test program was a linear model for beam deflection
through the steering magnets. We ignored higher order
effects of the steering magnets. The noise effects of beam
variations, magnet variations, and measurement variations
in the BPMs were al included in the simulation.
Additionally, we included random device failures as an
option in the simulation.

We interfaced TRANSPORT [4], a standard accelerator
modeling program, to Vsystem, our commercial software
product for developing control systems to provide arich
simulation environment. We modified TRANSPORT by
adding additional input types to relate card deck elements
to Vsystem database channels. We then modified
TRANSPORT to automatically recalculate the simulation
when any input parameters changed. Automatic
recalculation effectively simulates the real world response
of an accelerator.

We added realistic noise and error effects by filtering and
varying the data as the data was stored in the Vsystem
database. Random gaussian noise was added to data signals
for monitoring devices. Noise characteristics were
configurable from the Vsystem database. Time dependent
device behavior was aso included in the simulation.

Expert System

An expert system is a computer system that can help solve
complex, real-world problems. Expert systems use large
bodies of facts and procedures gathered from experts. These
facts and procedures are usually domain specific
knowledge gathered from real-world experience and not



necessarily equation-based constraints or foundational
theorems. Expert systems use rules and facts to reason and
make decisions, often using imprecise or incomplete
information. Most expert systems also have the ability to
explain their reasoning and decisions.

Our design used an expert system at the top level for
reasoning and control. We developed the expert system was
developed using the CLIPS package from NASA. Placing
the expert system at the top level provided a controller to
make large-scale decisions about how to solve the entire
control problem, without considering detailed control

issues. Details concerning how to solve subproblems were
handled by lower level control modules. With direct access
to the Vsystem control database, the expert system used all
pertinent information to build a model for solving the
system and to reason about specific components and more
general tuning issues. This top-down approach reflects a
true expert’s knowledge in a large system, and it provides a
good framework for building proper knowledge
representations.

With the expert system in control, an object representation
of the accelerator was necessary for reasoning about the
beamline and for easy manipulation of structured objects
reflecting the modularity of the beamline. Creating an
object representation of the system within CLIPS enabled
us to place knowledge about specific components within
the component representation while maintaining a
knowledge base representing facts and rules about the
entire system. An object reasoning model allows
appropriate encapsulation of knowledge with system
objects, modularity of reasoning, and the possibility of
distributed contral. It is feasible with this system to make
top level decisions and then provide control information to
a distributed set of semi-autonomous control agents
(objects).

Top-level control by an intelligent reasoning system
facilitates breaking both problem and solution spaces down
into well defined, easy to reason with subcomponents. We
began by separating beamline components into groups by
both functionality and control characteristics. By looking at
the characteristics of each component, we can develop
multiple partitions that imply certain types of solutions.
Once the solution space has been well partitioned, an
appropriate set of solutions is defined to operate on those
partitions. The top level reasoning system can focus a
particular partition and determine the best solution strategy
for its resolution.

Neural Networks

A neural network is a group of individual processing
elements, often divided into layers. The neural network
passes the results of computations between layers and
finally to an output layer. The individual processing
elements, roughly analogous to biological neurons,
combine inputs from multiple input paths and create an
output using a transfer function. Neural processing elements
can be combined into a variety of architectures and, along
with associated training functions, can learn and recall non-
linear functions and patterns. Neural networks have the

additional benefits of being able to function in the presence
of incomplete or noisy input data, and processing inputs in
parallel.

We chose a three-layer backpropagation network because
of the simplicity of the task (learning a linear relationship
in the presence of noise) and the straightforward
representation. We were able to directly map network input
and output nodes to BPMs and SMs respectively. The
network was then trained to recognize causal relationships
between changes in BPM readings and magnet
adjustments. A fully trained network was given desired
BPM changes as inputs. The network produced magnet
adjustments that would cause the changes.

Because we wanted the neural network to learn
relationships on the running beamline and to adjust its
weights accordingly, we attempted to train the network on
a run-time data set. We accomplished this task by allowing
the system to make random adjustments to magnets on the
beamline model and record the resulting BPM changes.
This design produced a real-time training instance for the
network. We then fed the BPM changes through the
network to generate a set of predicted magnet adjustments.
The system calculated the difference between predicted
and actual magnet adjustments and backpropagated the
error through the system.

While the neural network was able to learn SM/BPM
relationships using limited training cycles, it was not able
to converge on more complex problems. The neural network
failed for two important reasons. The first reason was
inadequate training data. Because the network attempted to
gather real-time data about the current state of the system,
it could not produce training data faster than it could
evaluate SM/BPM changes in the system. While the
network could typically improve its performance by
continuing to take samples of the system and produce
training instances, it would take too much on-line beam
time to produce enough training data to adequately train
the network.

Even if a training set were available, the network suffered
from a greater problem. When the network generates
training data as SM/BPM pairs and attempts to learn a
causal relationship between random SM changes and
resulting BPM changes, the network is not directed toward
specific solution methods for adjusting BPMs. Potentialy,
a large number of SM adjustments could produce the same
effect on BPM readings, given SMs in the same axis using
Separate power supplies.

Additional Control Methods

We also investigated several other control methods for
these problems. These included an analytic control
algorithm, fuzzy logic control and genetic algorithm
searches.

The analytic technique for steering control relies on
beamline behavior consistent with a simple linear model.
After the expert system determines a set of components
that make up a steering section, it measures the derivative
between steering magnet power source currents and beam



monitor readings. The controller adjusted power to the SMs
in the section and recorded resulting changes in BPM
readings. The expert system then built an appropriate
system of equations and solved them using gaussian
elimination (reduction). The analytic method makes no
attempt to filter noise or eliminate component errors. In
general, the analytic method provides an accurate solution
given large signal-to-noise ratio and properly functioning
beamline components.

We cannot expect a purely analytic solution to adequately
tune a beamline in most cases, especially during initial
startup. One of the conditions that causes difficulty for
tuning is beam fluctuation or jitter. Fuzzy logic is used in
the beamline controller for reasoning about real-valued
beamline data in the presence of noise or in situations
where analytic methods have failed. The fuzzy logic
steering solution used fuzzy rules about BPM relationships
to follow a hill-climbing algorithm toward a good solution.
Not only do fuzzy rules alow expert systems to reason
about real-valued data without relying on specific values
for rule boundaries, but they also allow reasoning about
how data will be measured and evaluated. The expert
system is able to modify the meaning of a set membership
depending upon the specific problem being solved, the
accuracy required, and the state of the system.

The fuzzy logic solution did a good job of quickly moving
to an approximately correct solution, but tended to oscillate
around a very accurate tune. We noticed that the accuracy
of the fuzzy solution depended greatly on the quality of the
knowledge we placed in the system. For example, a pure
hill-climbing fuzzy system that only attempted to minimize
BPM error tended to find local minima. When the rules
were modified to evaluate BPM ratios and isolate specific
magnets for adjustment, the fuzzy solution tended to find
better solutions fairly quickly.

The genetic algorithm (GA) is an appropriate heuristic for
focusing control because it can search large solution spaces
in non-linear domains. The GA for steering control used
genetic operators that modified magnet strengths according
to a preset probability distribution. We implemented the
focusing algorithm using fuzzy genetic operators which
modified magnet strengths according to a fuzzy pattern.
Fuzzy patterns eliminate the need for a priori determination
of magnet adjustment strengths and patterns. The focusing
GA was built with the realization that wire scanners cannot
deliver real-time continuous feedback. Trial solutions for
the algorithm are evaluated by actual testing on the
simulated beamline. Since typical solution patterns can be
determined for focusing, we used a special genetic operator
to search the solution population for unwanted solution
patterns (as determined by the expert system) and replace
them with patterns representing good possible solutions.
Fuzzy pattern matching and replacement guides the GA
toward certain solutions and away from others, according to
knowledge about typical solutions in the expert system. The
algorithm can still perform a global search over the solution
space, and it can still converge on a solution with a pattern
differing from suggested “good” patterns. The guided
solution was able to focus the periodic line in under 100
trials and to greater than expected accuracy.

Project Status

The first phase of this project is nearing completion. An
application has been submitted for additional funding. Work
is continuing to develop the next generation of the system
based on the results of the first prototype. One of the major
goals of the second phase of this project will be to test the
controller at several operational accelerator facilities to
determine successful it is under realistic conditions. The
additional tests for the second phase of the project will be
to expand the complexity of the simulated tuning problems
to further stress the capabilities of the controller.

Using knowledge gained during the first phase of this
project, we have prepared a clear plan for developing a
full, intelligent control system for accelerators. In the most
effective system, an expert system coordinates the
activities of a set of independent processes controlling
small subsystems of the accelerator. The expert system
manages the overall tuning process by identifying and
configuring subgoals based on the overall goal for the
accelerator. These subgoals are then either subdivided
further or are assigned to a suitable method, based on the
goal and the operational situation. Provided with a varied
set of methods, an expert system can overcome limitations
in any particular control method by substituting a solution
method well matched to the goal for a particular subsystem.
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