
Abstract

CEBAF has recently upgraded its accelerator control sys-
tem to use EPICS, a control system toolkit being developed by
a collaboration among laboratories in the US and Europe. The
migration to EPICS has taken place during a year of intense
commissioning activity, with new and old control systems
operating concurrently. Existing CAMAC hardware was pre-
served by adding a CAMAC serial highway link to VME;
newer hardware developments are now primarily in VME.
Software is distributed among three tiers of computers: first,
workstations and X terminals for operator interfaces and high
level applications; second, VME single board computers for
distributed access to hardware and for local control processing
(complex sequences, limit checking, some process control);
third, embedded processors where needed for faster closed
loop operation. In some cases, multiple VME processors trans-
parently access a single serial highway for improved perfor-
mance. This system has demonstrated the ability to scale
EPICS to controlling thousands of devices, including hundreds
of embedded processors, with control distributed among doz-
ens of VME processors executing more than 125,000 EPICS
database records. To deal with the large size of the control sys-
tem, CEBAF has integrated an object oriented database, pro-
viding data management capabilities for both low level I/O
(calibration, alarm limits, etc.) and high level machine model-
ling (optics properties, etc.). A new callable interface which is
control system independent permits access to live EPICS data,
data in other Unix processes, and data contained in the object
oriented database (extensible to other sources).

INTRODUCTION

The Continuous Electron Beam Accelerator Facility

CEBAF is a 4 GEV electron accelerator in the process of
commissioning in Newport News, Virginia, with the first
experiments expected to run this summer. The unique features
of this facility are its continuous beam and high luminosity --
ideal for experiments requiring large samples of events with
minimal accidental coincidence rates.

The accelerator consists of two 0.4 GeV superconducting
RF linacs connected by two 180o arcs. Each linac consists of 20
cryomodules, each containing 8 accelerating cavities. Beam is
recirculated through the machine for up to 5 passes yielding an
energy of 4 GeV. After any pass, the beam may be split and
sent to any of the 3 halls, allowing simultaneous operation at
the same or different (modulo 20%) energies. Two injectors

(one thermionic, one polarized) and a 3 slit chopper will allow
different halls to receive different beam intensities and polar-
ization.

Two of the three halls house conventional small solid
angle spectrometers, and will use the full beam intensity (200
uA). Hall B will house the CEBAF Large Acceptance Spec-
trometer (CLAS), which will require beam currents 3 or 4
orders of magnitude lower. In Halls A and C, parity violation
experiments will require measurements accurate to a part in
107. This flexibility in beam delivery and constraints upon
beam stability (both current and polarization) place complex
demands upon the control system.

The control systems for both the accelerator and the
experimental facilities are based upon EPICS -- Experimental
Physics and Industrial Control System. [1] EPICS was selected
as a replacement for the original control software when prob-
lems with scaling to the full machine were encountered nearly
two years ago. The following discussion will describe the con-
trols hardware at CEBAF, the use of EPICS in this system, and
the higher level software being added above EPICS.

CONTROL SYSTEM ARCHITECTURE

Standard Model

The control system follows what has been referred to as
the “standard model”: a client-server system consisting of a
collection of Unix workstations and X-terminals connected by
a network to multiple servers running device control software.
At CEBAF the network is a switched ethernet, which allows
simple scaling to high bandwidths as needed. The server
machines are VME single board computers running the EPICS
real-time database. The client machines are HP workstations
configured as two clusters for redundancy (Figure 1).

Conversion to EPICS

EPICS was selected as a replacement for the original
CEBAF control system (TACL) when problems were encoun-
tered scaling it to over 25,000 control points. [2] The switch to
EPICS was accomplished incrementally during machine com-
missioning, starting with the linacs and arcs a little over a year
ago, and ending with the injector (except the gun) this past win-
ter. The gun will be converted following an upgrade to its con-
trol hardware this summer.

The two systems were operated concurrently for much of
the year, with information being exchanged between the sys-
tems. This co-existence was made easier by the fact that both
EPICS and TACL are name based control systems -- applica-
tions address parameters in the machine by the name of the
parameter, and not its hardware address.

The CEBAF Control System1

William A. Watson III, Continuous Electron Beam Accelerator Facility,
MS 12H, 12000 Jefferson Av., Newport News, Virginia, 23606, USA

1 Work supported by the Department of Energy, contract DE-AC05-
84ER40150. Work performed by the various groups at CEBAF and
within the EPICS community.

The success of this conversion is evident in the success of
machine commissioning. First beam on target (one pass) was
delivered within 2 weeks of a date specified 7 years earlier!
CEBAF has so far operated beam around 7 of the 9 arcs, and
has delivered both pulsed and cw beam to Hall C for detector
commissioning activities.

Hardware

In the previous control system, almost all of the machine
hardware was interfaced to CAMAC. This investment in hard-
ware has been preserved by replacing the GPIB interfaces to
CAMAC with type L2 controllers, which are connected to
VME via a serial highway -- with typically 2-8 crates per high-
way. Newer devices are interfaced directly to VME, or via stan-
dards such as GPIB, RS-232, and Arcnet. (Many other buses
and interfaces are supported by EPICS at other sites).

Controlled Devices

The bulk of the control system deals with 3 types of
devices: RF cavities (~350), magnets (~2000), and beam posi-
tion monitors (~500). In addition, there are harps, beam view-
ers, beam loss monitors, gun and injector devices, and ancillary
controls and monitoring.

Each RF cavity has a dedicated 8 MHz ‘186 embedded
processor continuously (>20 Hz) adjusting setpoints of an ana-
log feedback system. In addition, these processors monitor for
certain critical faults, taking appropriate steps to protect the
hardware. A CAMAC card provides an addressable 32 word
buffer between the microprocessor and the VME processor,
with interrupt support for messages to the ‘186. During the
switch from TACL to EPICS, the embedded software was
changed only slightly to support a message based communica-
tion protocol.

Embedded processors are also used for each magnet, but
with much more limited functionality -- set the current and read
the current. Communication with each magnet controller is via
RS-485 serial lines, 32 controllers per line. At present, ramp
functions are handled by the VME processor, but will be
migrated to the embedded processors to improve response time
for ramping large numbers of magnets.

Most of the remaining control system hardware is inter-
faced with commercial or custom CAMAC modules, with the
exception of the newer beam position monitor electronics.
These devices use a mixture of commercial and custom VME
modules to support high speed acquisition of position informa-
tion (easily tens of kilohertz). Personnel safety is handled by a
completely separate PLC based system, and machine protec-
tion has both hardware and software components, with the soft-
ware generally monitoring the state of the hardware.

Additional information about the migration of the low
level device control from TACL to EPICS is given in a com-
panion paper. [3]

EPICS

EPICS has been described in previous papers, [1,4] and is
well documented on the World Wide Web, [5] so only a brief
overview will be given here. EPICS provides a client-server
architecture in which the server, called an IOC (I/O controller),
executes a real-time database in which each record describes an
input, an output, or a calculation.

Database Records

Each record contains a large amount of functionality; for
example, an analog input record monitors its input, converts
from raw counts to engineering units, compares the value to 2
upper and lower limits (more and less severe alarms), and may
cause other records to process. In addition, the record detects
significant changes (changes exceeding either of two pre-deter-
mined thresholds to support 2 classes of clients), and causes the
clients to be notified. Alarms may additionally have hysteresis
so that they don’t oscillate when near the alarm limit. Simula-
tion mode allows fetching a value from a location other than
hardware.

Records may be processed periodically or in response to
an external event -- either operator induced, hardware trig-
gered, or software triggered. Records scanning at higher rates
preempt slower records, improving real-time behavior.

Channel Access

Most fields within the record are accessible over the net-
work (some read-only). An accessed field is referred to as a
“channel”, and the network protocol is correspondingly “chan-
nel access”. [6] At present, channel access servers run only on
the IOC, a VxWorks based system. A portable version of the
channel access server is in development at LANL to allow any
network process to be a server. [7]

The channel access application programming interface
(API) is optimized for high performance applications, includ-
ing buffering all requests and responses and containing support

I
O
C

S
H
D

VME

CAMAC

Ethernet

HP-7xx X terminal

L
2

misc. I/O

RS-232
device

L
2

Figure 1: EPICS Architecture showing several displays and
IOC’s. CAMAC and other hardware is shown for one IOC.

X terminalHP-7xx

IOC-2 IOC-3

Ethernet
switch

for unlimited asynchronous replies (in the case of monitoring a
value or an alarm status). Clients connect to servers by broad-
casting the name of the desired channel (record.field), and bro-
ken connections are automatically re-established when a server
becomes available again. Several hundred connections per sec-
ond may be made to a single server, and monitoring several
thousand changes each second produces a negligible load on a
workstation (6% on an HP 715/50 for 2000 values/sec).

Algorithms

Control algorithms may be implemented via a number of
techniques within EPICS. Database records, including subrou-
tine and calc records, may be linked together to form an algo-
rithm, with data transferred from one record to another. Most
low level applications use this technique. More complex algo-
rithms may in addition use a state machine sequencer, using a
special language and compiler to facilitate this approach. A
sequence runs as a channel access client, and may access both
local and remote databases as well as any other resources on
the VME system. High performance algorithms are imple-
mented as tasks on the IOC, controlled and monitored through
database records. This is the approach used for CEBAF’s beam
position monitors and fast feedback systems. [8] Finally, Unix
applications (typically in C or C++) may interact with the
EPICS database through channel access.

Utilities

EPICS includes several main general purpose client pro-
grams. (1) a save/restore utility, which includes basic check
before restore and save-only capabilities; (2) general purpose
operator interfaces (one X based, the other Motif); (3) an alarm
manager to present alarm status organized into trees of arbi-
trary depth; (4) an archiver utility supporting 3 styles of data
acquisition: (i) periodic sampling, (ii) record on significant
change, and (iii) event driven sampling. In the third mode, a
change in one channel can initiate recording of values for a set
of other channels.

There are a wide variety of other general purpose clients
including diagnostic utilities, a knob manager, a parameter
page display -- with more being written each year.

EPICS also includes graphical and text based database
creation tools, and scripts and other tools to facilitate building
and managing the databases.

Integration with other software

EPICS has been integrated with a large number of other
packages, including tcl/tk, PV-Wave, IDL, Mathematica,
WingZ and others. In each of these packages, EPICS variables
are accessible by name through channel access, so that channel
access has functioned as a limited form of software bus.

CONTROL DEVICE API

One difficulty encountered with EPICS for high level
applications is the fact that the implementation details of a low
level algorithm are in many cases too visible: the high level
application knows the names of the various records and fields.
A change in the low level algorithm which adds or deletes

records (moving the needed information to other records) will
invalidate the high level application.

A new layer (cdev, for control device) has been added
above channel access to provide implementation hiding as well
as several additional features. In this new API (defined by a
team from all major EPICS sites), all I/O in the system is in the
form of messages to devices such ason or off or get current.
(Note: cdev builds upon ideas in earlier work done at ANL/
APS [9]). In cdev, a device is a virtual entity potentially span-
ning multiple servers, and even multiple underlying services
such as EPICS channel access, an archive data server, a host-
based database, or a legacy control system.

The cdev layer routes messages to the appropriate service
(such as channel access) based on the device name and the
message. In this way, one can obtain the length of a magnet
(from a static database) as easily as the current (from the real-
time database). The application program is unaware of the
source of the data: if the low level application is changed, it is
only necessary to fix the mapping, and all high level applica-
tions using that information are correct. An architectural dia-
gram of cdev is shown below. All services at the lowermost
layer are dynamically loaded, and new services (interfaces to
other systems) may be added without recompiling any other
cdev sources (in fact without stopping the running application).

An implementation of cdev in C++ has demonstrated that
this additional layering introduces on the order of 10% addi-
tional I/O processing for both establishing connections and for
receiving asynchronous replies. Advantages gained include a
device abstraction, implementation hiding, access to a wider
variety of data (including a centralized database, described
below), wildcard query capability (not present in EPICS), and
the ability to treat a collection of devices as a single device.

cdev Applications

A useful cdev demonstration application using tcl/tk for a
windowing interface has been written at CEBAF. It allows
selecting devices by regular expression, and can read/write/
monitor device attributes.

A more sophisticated cdev application now in develop-
ment will allow measuring correlations among parameters in
the control system. This correlation package takes its inspira-
tion from the SLAC Correlation Plot package, which was
designed to “measure anything as a function of anything
else”.[10] Any number of parameters may be systematically

application

cdev system layer

channel
access
service

static

service

other
service

Figure 2: Block diagram of a cdev application with 3 services
currently loaded.

database

stepped, and at each step point, any number of other parameters
may be measured. All I/O will be performed through cdev,
making the package independent of EPICS or any other control
system. In addition to device I/O, the package will support pop-
up windows for operator input or prompting, and the ability to
execute shell scripts (including tcl) at any point in the process.

In the long run, most of the general purpose EPICS appli-
cations will be re-written to run over cdev. This will decouple
them from the EPICS database (giving record implementation
independent request files) and allow them to be used in a wider
variety of (non-EPICS) environments. For example, the EPICS
display program DM (due to be converted this summer) could
then be used to control or monitor the control systems of other
non-EPICS laboratories -- the only integration expense will be
in writing the cdev service layer. A template service will be
available to facilitate this integration. Hopefully this ability to
exchange utility programs will provide another opportunity to
share software development among laboratories.

INTEGRATING AN OO DATABASE

Because of the large size of the control system (over
125,000 records), CEBAF decided a year ago to integrate the
ObjectStore object oriented (OO) database with EPICS. Prior
to this effort, EPICS contained no centralized database for
tracking configuration parameters (hardware addresses, etc.),
and operational parameters (alarms and limits, calibrations,
etc.). The only tools available were the tools used to construct
the databases, and the save/restore utility (smaller systems
could also use a spreadsheet for save/restore). Database build-
ing tools are not easily used by operators and are generally only
convenient for changing all instances of a parameter, for exam-
ple the skew rate in a magnet. Using save/restore to manage
these infrequently changing numbers is possible, but is cum-
bersome and increases the time to save the machine state.

With a centralized database, instance specific data is more
easily managed. Information in the “static” (non-real-time)
database is used to construct the real-time database at boot
time. Access to this data at run time is through the higher per-
formance IOCs. Persistent changes to these parameters may be
made by writing to both the IOC and the oo database. In the
future, support may be added for automatically migrating
changes from the real-time systems to the static database.

An object oriented database was chosen because it avoids
the costly step of table joins to link together dissimilar data, as
in displaying relationships among records. Furthermore, the
oodb is more naturally accessed by a C++ program in that
objects in the database are handled the same way objects in
memory are handled. A more detailed discussion of this project
is contained in a companion paper. [11]

MODEL DRIVEN APPLICATIONS

High level accelerator control applications generally
model the machine as an optical system, with the model param-
eters stored in a file, a database, or in memory; various applica-
tions access the shared parameters. At CEBAF these model

parameters will be maintained in memory by a dedicated server
process. Access to the parameters of the model (twiss parame-
ters, transfer matrices, etc.) will be by network calls using the
cdev interface. [12]

A consequence of this level of integration of the model
information and the rest of the control system is that parame-
ters of the model may be displayed and manipulated by the
general purpose display programs. Diagnostic information
about the operation of the server process may also be moni-
tored in this fashion.

Initially, high level accelerator control applications were
developed using the scripting language tcl [13] and its associ-
ated packages. A tcl interface to channel access was written at
CEBAF [14] which allows tcl to read, write, and monitor
EPICS database fields. During the commissioning process, tcl
based programs were produced to perform the following func-
tions:

1. linac energy management (adjusts acceleration ele-
ments and quads based upon demand energy)

2. energy lock (slow feedback, about 1/2 Hz, to correct the
linac energy based upon beam position in high disper-
sion region)

3. orbit lock (slow feedback from BPM’s to magnets)

4. automated orbit centering in quads

5. automated arc steering

6. automated linac steering

7. optics (general diagnostic package)

Each of these applications used DIMAD [15] to calculate the
relevant optics parameters; model information was obtained
from a server process via RPC. As the new model server
becomes available, the tcl based applications will be modified
to use the new model server; programs requiring high perfor-
mance will be written (or re-written) in C and C++.

SUMMARY

The migration of the control system at CEBAF from
TACL to EPICS during a year of commissioning has been
largely successful. EPICS is now successfully operating a sys-
tem an order of magnitude bigger than any previous installation
(APS has simultaneously scaled up to a comparable size), and
shows every indication of being able to scale up another order
of magnitude (with appropriate upgrades in network band-
width). One can safely say that architecture is no longer an
issue -- the “standard” model works.

New features are being added to facilitate the manage-
ment of large control systems, including an object oriented
database for device instance parameters.

CEBAF and others are now in the process of adding high
level accelerator control applications above EPICS, with suffi-
cient applications already in place to support commissioning.
These new applications are being added in a way which pre-
serves the open toolkit approach adopted by EPICS.

ACKNOWLEDGEMENTS

The conversion of the CEBAF control system was accom-
plished by deputy head Karen White and other members of the
CEBAF controls department, with considerable debugging
assistance from the CEBAF operations crew and technical sup-
port by visitors from LANL. Work on the cdev specification
was done in collaboration with Claude Saunders and other
members of the EPICS collaboration at APS, LBL, LANL,
DESY, and Keck; the cdev implementation was done by Jie
Chen in the Physics Data Acquisition Group, and by Walt
Akers and Danjin Wu in the Controls Department. Develop-
ment of high level applications was done by Hamid Shoaee (on
sabbatical from SLAC), and by Johannes Van Zeijts and other
members of the accelerator physics and accelerator perfor-
mance groups.

REFERENCES

[1] Leo R. Dalesio, et. al., “The Experimental Physics and
Industrial Control System Architecture: Past, Present, and
Future”, International Conference on Accelerator and
Large Experimental Physics Control Systems, Oct. 1993.

[2] William A. Watson III, et. al., “The CEBAF Accelerator
Control System: Migrating from a TACL to an EPICS
Based System”, op. cit.

[3] Sally Schaffner, et. al., “Device Control at CEBAF”, this
conference.

[4] Leo R. Dalesio, et. al., “The EPICS Architecture”,
ICALEPCS, 1991.

[5] The web site for EPICS is http://epics.aps.anl.gov.

[6] Jeff Hill, “Channel Access: A Software Bus for the
LAACS,” ICALEPCS, 1989.

[7] Jeff Hill, private communication.

[8] Mahesh Chowdhary et. al., “A Prototype Fast Feedback
System for Energy Lock at CEBAF”, this conference.

[9] Claude Saunders, private communication.

[10]L. Hendrickson et. al. “Correlation Plot Facility in the
SLC Control System”, ICALEPCS, 1991.

[11] Matthew Bickley et. al. “Managing Control Algorithms
with an Object-Oriented Database”, this conference.

[12]Bruce Bowling et. al., “Integrated On-Line Accelerator
Modeling at CEBAF”, this conference.

[13] John Ousterhout, “Tcl and the Tk Toolkit” Addison-Wes-
ley, 1994.

[14] Johannes Van Zeijts, private communication.

[15]R. V. Servranckx, User’s Guide to the Program DIMAD,
SLAC Report 285 UC-28 (A), May 1985.

